Abstract
The evaluation of scalar products with maximum accuracy plays an important role in computing inclusions for the solutions of linear systems. In this paper, we discuss this operation within the context of parallel algorithms for distributed-memory systems (multicomputers). We describe new variants for solving triangular systems of linear equations and for computing the LU factorization of matrices under the assumption that scalar products are implemented as single, indivisible operations and that no processor works on different scalar products simultaneously. All algorithms work in the real and interval case; the theoretical results are supplemented by measurements obtained from a transputer network.
Zusammenfassung
Die Auswertung von Skalarprodukten mit maximaler Genauigkeit spielt eine wichtige Rolle bei der Berechnung von Lösungseinschließungen für lineare Gleichungssysteme. In dieser Arbeit diskutieren wir diese Operation im Zusammenhang mit parallelen Algorithmen für speicherentkoppelte Systeme (Multicomputer). Wir beschreiben neue Varianten zur Lösung linearer Dreieckssysteme und zur Berechnung der LU-Zerlegung unter der Annahme, daß Skalarprodukte als unteilbare Operationen implementiert sind und daß kein Prozessor an mehreren Skalarprodukten gleichzeitig arbeitet. Alle Algorithmen sind für Punkt- und Intervallprobleme anwendbar; die theoretischen Resultate werden durch Messungen auf einem Transputernetzwerk bestätigt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press 1983.
Atanassova, L., Herzberger, J. (eds): Computer arithmetic and enclosure methods. Amsterdam: Elsevier 1992.
Bohlender, G.: What do we need beyond IEEE arithmetic. In: Computer arithmetic and self-validating numerical methods (Ullrich, C. P. ed.), pp. 1–32. New York: Academic Press 1990.
Dunigan, T.: Performance of the INTEL iPSC/860 and NCUBE 6400 hypercubes. Technical Report ORNL/TN-11790, Oak Ridge National Laboratory, 1991.
Eisenstat, S. C., Heath, M. T., Henkel, C. S., Romine, C. H.: Modified cyclic algorithms for solving triangular systems on distributed-memory multiprocessors. SIAM J. Sci. Stat. Comput., 589–600 (1988).
Heath, M., Romine, C.: Parallel solution of triangular systems on distributed-memory multi-processors. SIAM J. Sci. Stat. Comput.9, 558–588 (1988).
Klein, W.: Verified results for linear systems with sparse matrices. In: Accurate numerical algorithms—A collection of research papers (Ullrich, C. P., Wolff von Gudenberg, J. eds), pp. 137–161. Berlin Heidelberg New York Tokyo: Springer 1989.
Kuck, D.: Parallel processing of ordinary programs. Adv. Comput.15, 119–179 (1976).
Kulisch, U., Miranker, W. (eds.): A new approach to scientific computation. New York: Academic Press 1983.
Ortega, J. M.: Theijk forms of factorization methods I. Vector computers. Parallel Comput.7, 135–147 (1988).
Ortegra, J. M.: Theijk forms of factorization methods II. Parallel systems. Parallel Comput.7, 149–162 (1988).
Quinn, M.: Designing efficient algorithms for parallel computers New York: McGraw-Hill 1987.
Reith, R.: Wissenschaftliches Rechnen auf Multicomputern—BLAS-Routinen und die Lösung linearer Gleichungssysteme mit Fehlerkontrolle. Dissertation, Institut für Informatik, Universität Basel, 1993.
Reith, R.: Description and interfaces of accurate BLAS-routines for transputer networks. Technical Report 93-5, Institut für Informatik, Universität Basel, 1993.
Romine, C.: Factorization methods for the parallel solution of linear systems. Ph. D. Thesis, Applied Mathematics, University of Virginia, 1986.
Ullrich, C. P., Reith, R.: A reliable linear algebra library for transputer networks. Proceedings of the International Congress on Computer Systems and Applied Mathematics, CSAM 93, St. Petersburg, July 19–23 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Reith, R., Ullrich, C.P. Coarse-grain parallelizations of interval algorithms decomposing dense matrices and solving triangular systems on multicomputers. Computing 53, 243–257 (1994). https://doi.org/10.1007/BF02307377
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02307377