Abstract
We show that if the conjectureP≠NP is true, then there does not exist a general polynomial-time algorithm for enclosing the solution set of a system of linear interval equations.
Zusammenfassung
Unter Annahme der VermutungP≠NP wird gezeigt, daß es keinen allgemeinen polynomialen Algorithmus gibt, der die Intervallhülle der Lösungsmenge eines Systems linearer Intervall-Gleichungen einschließt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press 1983.
Garey, M. R., Johnson, D. S.: Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman 1979.
Neumaier, A.: Interval methods for systems of equations. Cambridge: Cambridge University Press 1990.
Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst.6, 1–9 (1993).
Reichmann, K.: Abbruch beim Intervall-Gauss-Algorithmus. Computing,22, 355–361 (1979).
Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions, of linear systems with interval data is NP-hard (to appear in SIAM J. Matr. Anal.).
Schrijver, A.: Theory of integer and linear programming. Chichester: Wiley 1986.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rohn, J. Enclosing solutions of linear interval equations is NP-hard. Computing 53, 365–368 (1994). https://doi.org/10.1007/BF02307386
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02307386