Skip to main content
Log in

Ein schneller Algorithmus zur Lösung des Riemann-Problems

An efficient algorithm for the solution to the Riemann problem

  • Kurze Mitteilungen
  • Published:
Computing Aims and scope Submit manuscript

Zusammenfassung

Godunovs Methode, und besonders deren Erweiterung auf höhere Ordnung, approximiert die Gleichungen der Gasdynamik genau und löst Unstetigkeiten scharf auf. Diese Methoden basieren auf der Lösung von Riemann-Problemen an den Zellrändern. Aufbauend auf einem globalen Existenzbeweis wird eine neue Methode zur numerischen Lösung des Riemann-Problems vorgestellt. Diese Methode erweist sich als sehr zuverlässig und numerisch effizient.

Abstract

Godunov's method, and especially its extensions to higher order accuracy, can approximate the equations of gas dynamics accurately and resolve discontinuities sharply. These methods are based on solving Riemann problems at the interface between cells. A new method is proposed for solving the Riemann problem based on a global existence proof for the solution of the Riemann problem. This method is found to be very reliable and computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Courant, R., Friedrichs, K.: Supersonic flow and shock waves. New York: Interscience Publishers 1948.

    Google Scholar 

  2. Chorin, A. J.: Random choice solution of hyperbolic systems. J. Compt. Phys.22, 517–533 (1976).

    MATH  MathSciNet  Google Scholar 

  3. Chorin, A. J., Marsden, J. E.: A Mathematical Introduction to Fluid Mechanics, New York: Springer-Verlag 1978.

    Google Scholar 

  4. Einfeldt, B.: Ein schneller Algorithmus zur Lösung des Riemann-Problems. Bericht des Instituts für Geometrie und Praktische Mathematik, Nr. 38, Aachen (1986).

  5. Godunov, S. K.: A difference scheme for numerical computation of discontinuous solution of equation of fluid dynamics. Math. Sbornik47, 271–306 (1959).

    MATH  MathSciNet  Google Scholar 

  6. Lax, P. D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conf. Board Math. Sci.11, SIAM (1973).

  7. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag 1983.

    Google Scholar 

  8. Sod, G. A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comp. Phys.27, 1–31 (1978).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einfeldt, B. Ein schneller Algorithmus zur Lösung des Riemann-Problems. Computing 39, 77–86 (1987). https://doi.org/10.1007/BF02307715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307715

AMS Subject Classifications

Key words