Skip to main content

Advertisement

Log in

Optimal characteristic polynomials for digital multistep pseudorandom numbers

Optimale charakteristische Polynome für Pseudozufallszahlen nach der digitalen Mehrschrittmethode

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The digital multistep method generates uniform pseudorandom numbers by transforming sequences of integers obtained by multistep recursions. The statistical independence properties of these pseudorandom numbers depend on the characteristic polynomial of the recursion. We describe a method of calculating characteristic polynomials that are optimal with respect to statistical independence of pairs of successive pseudorandom numbers. Tables of such optimal characteristic polynomials for degrees ≤64 are included.

Zusammenfassung

Die digitale Mehrschrittmethode erzeugt gleichverteilte Pseudozufallszahlen durch Transformation von Folgen ganzer Zahlen, die aus Rekursionen höherer Ordnung gewonnen werden. Die statistischen Unabhängigkeitseigenschaften dieser Pseudozufallszahlen hängen vom charakteristischen Polynom der Rekursion ab. Es wird eine Methode zur Berechnung von charakteristischen Polynomen beschrieben, welche bezüglich der statistischen Unabhängigkeit von Paaren aufeinanderfolgender Pseudozufallszahlen optimal sind. Die Arbeit enthält auch Tabellen solcher optimaler charakteristischer Polynome für Grade ≤64.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Beard, J. T. B., Jr., West, K. I.: Prime and primitive polynomials of degreen overGF(p d), unpublished table, edited from exhaustive factorization tables obtained by computer.

  2. Brillhart, J., Lehmer, D. H., Selfridge, J. L., Tuckerman, B., Wagstaff, S. S.: Factorizations ofb n±1,b=2, 3, 5, 6, 7, 10, 11, 12 up to High Powers. Contemporary Mathematics, Vol. 22. Providence: Amer. Math. Soc. 1983.

    Google Scholar 

  3. Knuth, D. E.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed. Reading: Addison-Wesley 1981.

    Google Scholar 

  4. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge: Cambridge Univ. Press 1986.

    Google Scholar 

  5. Marsaglia, G.: Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. U. S. A.61, 25–28 (1968).

    MATH  MathSciNet  Google Scholar 

  6. Niederreiter, H.: The performance ofk-step pseudorandom number generators under the uniformity test. SIAM J. Sci. Statist. Computing5, 798–810 (1984).

    MATH  MathSciNet  Google Scholar 

  7. Niederreiter, H.: Pseudozufallszahlen und die Theorie der Gleichverteilung. Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl.195, 109–138 (1986).

    MATH  MathSciNet  Google Scholar 

  8. Niederreiter, H.: The serial test for digitalk-step pseudorandom numbers. Math. J. Okayama Univ. (to appear).

  9. Niederreiter, H.: Rational functions with partial quotients of small degree in their continued fraction expansion. Monatsh. Math.103, 269–288 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  10. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. (to appear).

  11. Peterson, W. W., Weldon, E. J., Jr.: Error-Correcting Codes, 2nd ed. Cambridge: M.I.T. Press 1972.

    Google Scholar 

  12. Tausworthe, R. C.: Random numbers generated by linear recurrence modulo two. Math. Comp.19, 201–209 (1965).

    MATH  MathSciNet  Google Scholar 

  13. van Wijngaarden, A.: Mathematics and computing. Proc. Symp. on Automatic Digital Computation, pp. 125–129. London: H. M. Stationery Office 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullen, G.L., Niederreiter, H. Optimal characteristic polynomials for digital multistep pseudorandom numbers. Computing 39, 155–163 (1987). https://doi.org/10.1007/BF02310104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02310104

AMS Subject Classifications

Key words