Abstract
Many authors have worked on approaches for solving Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) whose solutions contain one or more singular points within the interval of integration. Their approaches, however, assumed that the user knows in advance that the problem is singular. Hence they introduced new formulas to cope with this difficulty. In this paper, a new approach to detect and locate a singularity is suggested. This approach, which does not require the changing of the underlying formula, is comprised of two stages. The first is a preliminary singularity detection stage. The second stage is the confirmation stage which gathers more information about the existence and location of the singular point. We justify the first state and introduce three different techniques for confirming the existence of a singularity. The numerical results show that our approach is effective.
Zusammenfassung
Es gibt eine Reihe von Ansätzen zur numerischen Behandlung von Anfangswertproblemen für gewöhnliche Differentialgleichungen, deren Lösungen eine oder mehrere singuläre Stellen im Integrationsintervall enthalten. Diese Ansätze nehmen jedoch an, daß der Benutzer im voraus weiß, daß das Problem singulär ist; es werden deshalb neue Formeln eingeführt, die auf diese Schwierigkeiten zugeschnitten sind. In unserer Arbeit wird ein neuer Zugang zur Erkennung und Lokalisierung einer Singularität vorgeschlagen. Er erfordert keine Veränderung der zugrundeliegenden Integrationsformel und besteht aus zwei Stufen. Die erste Stufe dient zum Hinweis auf eine vermutete Singularität. Die zweite Stufe, die mehr Information bezüglich der Existenz und Lage der Singularität aufbaut, dient der Bestätigung des Vorhandenseins. Wir begründen unsere erste Stufe und geben drei verschiedene Techniken zur Bestätigung des Vorhandenseins an. Die numerischen Ergebnisse zeigen die Wirksamkeit unseres Vorgehens.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arndt, H.: Lösung von gewöhnlichen Differentialgleichungen mit nichtlinearen Splines. Numer. Math.33, 323–338 (1979).
Baker, G. A.: Recursive calculation of pade approximation. In: Morris, G. (ed.) Pade approximant and their applications, pp. 83–91. New York: Academic Press 1973.
Chang, Y. F.: Conduction-diffusion theory of semiconductor junctions. J. Appl. Physics38, 534–544 (1967).
Chang, Y. F.: Automatic solution of differential equations. In: Colton, D. L., Gilbert, R. P. (eds.) Constructive and computational methods for differential equations. Berlin, Heidelberg, New York: Springer 1974. (Lecture Notes in Mathematics430, 61–94)
Chang, Y. F., Corliss, G. F.: Three and five term convergence tests. In Proceedings of the Sixth Manitoba Conference on Numerical Mathematics, Congressus NumerantiumXVII, 135–153 (1976).
Chang, Y. F., Corliss, G. F.: Ratio-like and recurrence relation tests for convergence of series. J. Inst. Maths. Applics.25, 349–359 (1980).
Chang, Y. F., Corliss, G. F.: Solving ordinary differential equations using taylor series. ACM Trans. Math. Software8, 114–144 (1982).
Corliss, G. F.: On computing darboux type series analyses, Nonlinear Analysis, Theory, Methods and Applications7, 1247–1253 (1983).
De Boor, C.: Cadre: An algorithm for numerical quadrature. In: John R. Rice (ed.) Mathematical software, pp. 417–449. New York: Academic Press, 1971.
Dormand, J. R., Prince, P. J.: Runge-Kutta triples. Comp. Math. Appl.12, 1007–1017 (1986).
Enright, W. H., Jackson, K. R., Norsett, S. P., Thomsen, P. G.: Interpolants for Runge-Kutta. ACM Trans. Math. Soft.12, 193–218 (1986).
Fatunla, S. O.: Numerical treatment of singular IVPs. Comp. Math. Appl.12, 1109–1115 (1986).
Gilewich, J.: Numerical detection of the best Pade approximant and determination of the Fourier coefficients of insufficiently sampled functions. In: Morris, G. (ed.) Pade approximation and their application, pp. 99–103. New York: Academic Press 1973.
Gladwell, I., Shampine, L. F., Baca, L. S., Brankin, R. W.: Practical aspects of interpolation in Runge-Kutta codes. SIAM J. Sci. Stat. Comput.8, 322–341 (1987).
Horn, M. K.: Fourth and fifth order, scaled Runge-Kutta algorithm for treating dense output. SIAM J. Numer. Anal.20, 558–568 (1980).
Hull, T. E., Enright, W. H., Jackson, K. R.,: User's guide for DVERK A subroutine for solving nonstiff ODE's, Technical Report No. 100/76, Department of Computer Science, University of Toronto, Canada, 1976.
Hunter, C., Guerrieri, B.: Deducing the properties of singularities of functions from their Taylor series coefficients. SIAM J. Appl. Math.39, 248–263 (1980).
Lambert, J. D., Shaw, B.: On the numerical solution ofy′=f(x,y) by a class of formula based on rational approximation. Math. Comput.19, 456–462 (1965).
Lambert, J. D., Shaw, B.: A method for the numerical solution ofy′=f(x,y) based on a self-adjusting non-polynomial interpolant. Math. Comput.20, 11–20 (1966).
Luke, Y. L., Fair, W., Wimp, J.: Predictor-corrector formulas based on rational interpolants. Comp. Math. Appl.1, 3–12 (1975).
Lynch, R. E.: Generalized trapezoid formulas and errors in Romberg quadrature, Blanch anniversary volume, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, pp. 215–229 (1967).
Lyness, J. N., Ninham, B. W.: Numerical quadrature and asymptotic expansions. Math. Comput.21, 162–178 (1967).
Rall, L. B.: Automatic differentiation: Techniques and applications, Berlin, Heidelberg, New York, Tokyo: Springer 1981. (Lecture Notes in Computer Science, 120)
Shampine, L. F.: Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal.22, 1014–1027 (1985).
Shampine, L. F. (1986) Some practical Runge-Kutta formulas. Math. Comp.46, 135–150 (1986).
Suhartanto, H.: A new approach for detecting singular points in the Numerical Solution of Initial Value Problems, M.Sc. Thesis, Department of Computer Science, University of Toronto, Canada, 1990.
Voght, W.: Numerische Verfahren für Anfangswertaufgaben, deren Lösungen Singularitäten besitzen, in Numerisch Behandlung von Differential-gleichungen IV, Wissenschaftliche Beiträge der Friedrich-Schiller Universität Jena, Jena, Germany, pp. 127–144 (1987).
Werner, H.: Calculations of singularities for solutions of algebraic differential equations. In: Werner, H. et al. (eds) Computational aspects of complex analysis, pp. 325–360. Dordrecht: Reidel 1983.
Willers, I. M.: A new integration algorithm for ordinary differential equations based on continued fraction approximation. Comm. ACM17, 504–508 (1974).
Author information
Authors and Affiliations
Additional information
Supported by the Information Technology Research Centre of Ontario, and the Natural Science and Engineering Research Council of Canada.
Rights and permissions
About this article
Cite this article
Suhartanto, H., Enright, W.H. Detecting and locating a singular point in the numerical solution of IVPs for ODEs. Computing 48, 161–175 (1992). https://doi.org/10.1007/BF02310531
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02310531