Skip to main content
Log in

Detecting and locating a singular point in the numerical solution of IVPs for ODEs

Die Erkennung und Lokalisierung einer singulären Stelle bei der numerischen Lösung von AWPen für gewöhnliche Differentialgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Many authors have worked on approaches for solving Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) whose solutions contain one or more singular points within the interval of integration. Their approaches, however, assumed that the user knows in advance that the problem is singular. Hence they introduced new formulas to cope with this difficulty. In this paper, a new approach to detect and locate a singularity is suggested. This approach, which does not require the changing of the underlying formula, is comprised of two stages. The first is a preliminary singularity detection stage. The second stage is the confirmation stage which gathers more information about the existence and location of the singular point. We justify the first state and introduce three different techniques for confirming the existence of a singularity. The numerical results show that our approach is effective.

Zusammenfassung

Es gibt eine Reihe von Ansätzen zur numerischen Behandlung von Anfangswertproblemen für gewöhnliche Differentialgleichungen, deren Lösungen eine oder mehrere singuläre Stellen im Integrationsintervall enthalten. Diese Ansätze nehmen jedoch an, daß der Benutzer im voraus weiß, daß das Problem singulär ist; es werden deshalb neue Formeln eingeführt, die auf diese Schwierigkeiten zugeschnitten sind. In unserer Arbeit wird ein neuer Zugang zur Erkennung und Lokalisierung einer Singularität vorgeschlagen. Er erfordert keine Veränderung der zugrundeliegenden Integrationsformel und besteht aus zwei Stufen. Die erste Stufe dient zum Hinweis auf eine vermutete Singularität. Die zweite Stufe, die mehr Information bezüglich der Existenz und Lage der Singularität aufbaut, dient der Bestätigung des Vorhandenseins. Wir begründen unsere erste Stufe und geben drei verschiedene Techniken zur Bestätigung des Vorhandenseins an. Die numerischen Ergebnisse zeigen die Wirksamkeit unseres Vorgehens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arndt, H.: Lösung von gewöhnlichen Differentialgleichungen mit nichtlinearen Splines. Numer. Math.33, 323–338 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, G. A.: Recursive calculation of pade approximation. In: Morris, G. (ed.) Pade approximant and their applications, pp. 83–91. New York: Academic Press 1973.

    Google Scholar 

  3. Chang, Y. F.: Conduction-diffusion theory of semiconductor junctions. J. Appl. Physics38, 534–544 (1967).

    Google Scholar 

  4. Chang, Y. F.: Automatic solution of differential equations. In: Colton, D. L., Gilbert, R. P. (eds.) Constructive and computational methods for differential equations. Berlin, Heidelberg, New York: Springer 1974. (Lecture Notes in Mathematics430, 61–94)

    Google Scholar 

  5. Chang, Y. F., Corliss, G. F.: Three and five term convergence tests. In Proceedings of the Sixth Manitoba Conference on Numerical Mathematics, Congressus NumerantiumXVII, 135–153 (1976).

  6. Chang, Y. F., Corliss, G. F.: Ratio-like and recurrence relation tests for convergence of series. J. Inst. Maths. Applics.25, 349–359 (1980).

    MathSciNet  Google Scholar 

  7. Chang, Y. F., Corliss, G. F.: Solving ordinary differential equations using taylor series. ACM Trans. Math. Software8, 114–144 (1982).

    MathSciNet  Google Scholar 

  8. Corliss, G. F.: On computing darboux type series analyses, Nonlinear Analysis, Theory, Methods and Applications7, 1247–1253 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  9. De Boor, C.: Cadre: An algorithm for numerical quadrature. In: John R. Rice (ed.) Mathematical software, pp. 417–449. New York: Academic Press, 1971.

    Google Scholar 

  10. Dormand, J. R., Prince, P. J.: Runge-Kutta triples. Comp. Math. Appl.12, 1007–1017 (1986).

    Article  MathSciNet  Google Scholar 

  11. Enright, W. H., Jackson, K. R., Norsett, S. P., Thomsen, P. G.: Interpolants for Runge-Kutta. ACM Trans. Math. Soft.12, 193–218 (1986).

    MathSciNet  Google Scholar 

  12. Fatunla, S. O.: Numerical treatment of singular IVPs. Comp. Math. Appl.12, 1109–1115 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilewich, J.: Numerical detection of the best Pade approximant and determination of the Fourier coefficients of insufficiently sampled functions. In: Morris, G. (ed.) Pade approximation and their application, pp. 99–103. New York: Academic Press 1973.

    Google Scholar 

  14. Gladwell, I., Shampine, L. F., Baca, L. S., Brankin, R. W.: Practical aspects of interpolation in Runge-Kutta codes. SIAM J. Sci. Stat. Comput.8, 322–341 (1987).

    Article  MathSciNet  Google Scholar 

  15. Horn, M. K.: Fourth and fifth order, scaled Runge-Kutta algorithm for treating dense output. SIAM J. Numer. Anal.20, 558–568 (1980).

    MathSciNet  Google Scholar 

  16. Hull, T. E., Enright, W. H., Jackson, K. R.,: User's guide for DVERK A subroutine for solving nonstiff ODE's, Technical Report No. 100/76, Department of Computer Science, University of Toronto, Canada, 1976.

    Google Scholar 

  17. Hunter, C., Guerrieri, B.: Deducing the properties of singularities of functions from their Taylor series coefficients. SIAM J. Appl. Math.39, 248–263 (1980).

    Article  MathSciNet  Google Scholar 

  18. Lambert, J. D., Shaw, B.: On the numerical solution ofy′=f(x,y) by a class of formula based on rational approximation. Math. Comput.19, 456–462 (1965).

    MathSciNet  Google Scholar 

  19. Lambert, J. D., Shaw, B.: A method for the numerical solution ofy′=f(x,y) based on a self-adjusting non-polynomial interpolant. Math. Comput.20, 11–20 (1966).

    MathSciNet  Google Scholar 

  20. Luke, Y. L., Fair, W., Wimp, J.: Predictor-corrector formulas based on rational interpolants. Comp. Math. Appl.1, 3–12 (1975).

    MathSciNet  Google Scholar 

  21. Lynch, R. E.: Generalized trapezoid formulas and errors in Romberg quadrature, Blanch anniversary volume, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, pp. 215–229 (1967).

  22. Lyness, J. N., Ninham, B. W.: Numerical quadrature and asymptotic expansions. Math. Comput.21, 162–178 (1967).

    MathSciNet  Google Scholar 

  23. Rall, L. B.: Automatic differentiation: Techniques and applications, Berlin, Heidelberg, New York, Tokyo: Springer 1981. (Lecture Notes in Computer Science, 120)

    Google Scholar 

  24. Shampine, L. F.: Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal.22, 1014–1027 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  25. Shampine, L. F. (1986) Some practical Runge-Kutta formulas. Math. Comp.46, 135–150 (1986).

    MATH  MathSciNet  Google Scholar 

  26. Suhartanto, H.: A new approach for detecting singular points in the Numerical Solution of Initial Value Problems, M.Sc. Thesis, Department of Computer Science, University of Toronto, Canada, 1990.

    Google Scholar 

  27. Voght, W.: Numerische Verfahren für Anfangswertaufgaben, deren Lösungen Singularitäten besitzen, in Numerisch Behandlung von Differential-gleichungen IV, Wissenschaftliche Beiträge der Friedrich-Schiller Universität Jena, Jena, Germany, pp. 127–144 (1987).

    Google Scholar 

  28. Werner, H.: Calculations of singularities for solutions of algebraic differential equations. In: Werner, H. et al. (eds) Computational aspects of complex analysis, pp. 325–360. Dordrecht: Reidel 1983.

    Google Scholar 

  29. Willers, I. M.: A new integration algorithm for ordinary differential equations based on continued fraction approximation. Comm. ACM17, 504–508 (1974).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Information Technology Research Centre of Ontario, and the Natural Science and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhartanto, H., Enright, W.H. Detecting and locating a singular point in the numerical solution of IVPs for ODEs. Computing 48, 161–175 (1992). https://doi.org/10.1007/BF02310531

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02310531

AMS Subject Classifications

Key words

Navigation