Skip to main content
Log in

Anisotropic interpolation with applications to the finite element method

Anisotrope Interpolation mit Anwendungen auf die finite Elemente Methode

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The usual Bramble-Hilbert theory is extended for proving more refined estimates of the interpolation error. For a large class of finite elements, it is shown that one can derive benefit from the presence of small and even large angles of the elements. For bilinear shape functions on rectangular grids it is proved that interpolation and finite element approximation error coincide. As an example, we consider the finite element approximation for problems on domains containing edges.

Zusammenfassung

Die bekannte Bramble-Hilbert Theorie wird erweitert, um verbesserte Abschätzungen für den Interpolationsfehler zu beweisen. Für eine große Klasse finiter Elemente läßt sich zeigen, daß man mit Dreiecken mit kleinem oder sogar großem Winkel vorteilhafter interpolieren kann. Für bilineare Ansatzfunktionen auf rechteckigem Gitter wird bewiesen, daß der Interpolationsfehler mit dem Approximationsfehler übereinstimmt. Als Anwendungsbeispiel wird die Finite Elemente Approximation von Problemen auf Gebieten mit Kanten betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.

    Google Scholar 

  2. Apel, Th.: Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. Thesis, University of Technology Chemnitz, 1991.

  3. Arbenz, P.: Computable finite element error bounds for poissons equation. IMA J. Number. Anal.29, 475–479 (1982).

    MathSciNet  Google Scholar 

  4. Arnold, D. N., Breezi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo21, 337–344 (1984).

    MathSciNet  Google Scholar 

  5. Barnhill, R. E., Brown, J. H., Mitchell, A. R.: A comparison of finite element error bounds for Poissons equation. IMA J. Numer. Anal.28, 95–103 (1981).

    MathSciNet  Google Scholar 

  6. Bramble, J. H., Hilbert, S. R.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM. J. Numer. Anal.7, 112–124 (1970).

    Article  MathSciNet  Google Scholar 

  7. Bramble, J. H., Hilbert, S. R.: Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math.16, 362–369 (1971).

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.

    Google Scholar 

  9. Ciarlet, P. G., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer. Math.17, 84–100 (1971).

    Article  MathSciNet  Google Scholar 

  10. Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer.R-2, 77–84 (1975).

    MATH  MathSciNet  Google Scholar 

  11. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numer.R-3, 33–76 (1973).

    MathSciNet  Google Scholar 

  12. Dobrowolski, M.: Wie groß ist der Diskretisierungsfehler beim finite Elemente Verfahren? ZAMM70, T667-T668 (1990).

    MathSciNet  Google Scholar 

  13. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp.34, 441–463 (1980).

    MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Grundlehren der math. Wiss. 224, Springer: Berlin, 1977.

    Google Scholar 

  15. Gout, J. L.: Estimation de l'erreur d'interpolation d'Hermite dans n. Numer. Math.28, 407–429 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  16. Hughes, T. J. R., Franca, L. P., Balestra, M.: A new finite element formulation for computationable fluid mechanics. Comp. Appl. Mech. Eng.59, 85–99 (1986).

    MathSciNet  Google Scholar 

  17. Jamet, P.: Estimation de l'erreur d'interpolation dans un domaine variable et application aux éléments finis quadrilatéraux dégénérés, in: Méthodes Numériques en Mathématiques Appliquées, 55–100, Presses de l'Université de Montréal 1976.

  18. Křížek, M.: On semiregular families of triagulations and linear interpolation, to eppear in Proc. EQUADIFF VII, 1989.

  19. Kufner, A., Sändig, A.-M.: Some applications of weighted sobolev spaces. Leipzig: BSB B.G. Teubner Verlassgesellschaft, 1987.

    Google Scholar 

  20. Nikolski, S. M.: Inequalities for entire functions of exponential type and their application to the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov38, 244–278 (1951). [English transl.: Amer. Math. Soc. Transl. (2),80, 1–38 (1969)].

    Google Scholar 

  21. Oganesjan, L. A., Rukhovets, L. A.: Variational difference methods for solving elliptic equations (Russian). Isdatelstvo Akad. Nauk Arm. SSR, Jerevan 1979.

    Google Scholar 

  22. Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54, 483–493 (1990).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, T., Dobrowolski, M. Anisotropic interpolation with applications to the finite element method. Computing 47, 277–293 (1992). https://doi.org/10.1007/BF02320197

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02320197

AMS Subject Classification

Key words

Navigation