Skip to main content
Log in

A combined method for enclosing all solutions of nonlinear systems of polynomial equations

Комбинированный метод вычисления оболочек всех решений нелинейных систем полиномиальных уравнений

  • Mathematical Research
  • Published:
Reliable Computing

Abstract

We consider the problem of finding interval enclosures of all zeros of a nonlinear system of polynomial equations. We present a method which combines the method of Gröbner bases (used as a preprocessing step), some techniques from interval analysis, and a special version of the algorithm of E. Hansen for solving nonlinear equations in one variable. The latter is applied to a triangular form of the system of equations, which is generated by the preprocessing step. Our method is able to check if the given system has a finite number of zeros and to compute verfied enclosures for all these zeros. Several test results demonstrate that our method is much faster than the application of Hansen’s multidimensional algorithm (or similar methods) to the original nonlinear systems of polynomial equations.

Abstract

Рассматрнвается залача нахожлення интервальных оболочек всех корней нелннейной снстемы полиномиальных уравнений. Прелстаилена процелура, обьелиняюшая метод базисов Грёбнера (нснользуемый на нрелварнтельном этаце вычцслений), некоторые методнки интервального аналнза н особую разновидность алгоритма Е. Хансена для решення нелинейных уравнений с одной иеременной. Послелний прнменяется к треугольному уредставлению, снстемы уравнений, сформированному на предварнтельном этапе. Онисываемый метод снособен проверять, нмеет, ли данная снстема конечное чнсло корней, и вычнслять вернфицированные ободочкн для всех корней. Несколько чнсленных прнмеров ноказывают, что наш метод является намного более быстрым, чем многомерный алгорнтм Нансена (илп аналогичные методы) в нрименении к исходным нелииейным снстемам полнномнальных уравнений.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. andHerzberger J..Introduction to interval computations, Academic Press, New York, 1983.

    Google Scholar 

  2. Buchberger, B..Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Mathematicae4 (1970), pp. 374–383.

    MATH  MathSciNet  Google Scholar 

  3. Buchberger, B..Theoretical basis for the reduction of polynomials to canonical forms.SIGSAM Bulletin 39 (1976), pp. 19–29.

    MathSciNet  Google Scholar 

  4. Buchberger, B..Some properties of Gröbner bases for polynomial ideals. SIGSAM Bulletin40 (1976). pp. 19–24.

    MathSciNet  Google Scholar 

  5. Buchberger, B..A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In: “Proceedings of the 1979 European Symposium on Symbolic and Algebraic Computation”. Lecture Notes in Computer Science 72, Springer-Verlag, Berlin, Heidelberg, 1979. pp.3–21.

    Google Scholar 

  6. Buchberger, B.H-bases and Gröbner bases for polynomial ideals. CAMP-Linz publication 81-20, University of Linz. 1981.

  7. Buchberger, B.A. survey on the method of Gröbner bases for solving problems in connection with systems of multivariate polynomials. In: Inada, N. and Soma, T. (eds) “Proceedings of the 2nd RIKEN Symposium on Symbolic and Algebraic Computation”, World Scientific Publ., 1985, pp. 69–83.

  8. Davenport, J. H., Siret, Y., and Tournier, E.Computer algebra, systems and algorithms for algebraic computation. Academic Press, New York, 1988.

    Google Scholar 

  9. Gaganov, A. A.Computational complexity of the range of the polynomial in several variables. Cybernetics (1985). pp. 418–421.

  10. Hammer, R., Hocks, M., Kulisch U., and Ratz, D.Numerical toolbox for verified computing I — Basic numerical problems. Springer-Verlag, Heidelberg, 1993.

    Google Scholar 

  11. Hansen, E..A globally convergent interval method for computing and bounding real roots. BIT18 (1978), pp. 415–424.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hansen, E.Global optimization using interval analysis. Marcel Dekker, New York, 1992.

    Google Scholar 

  13. Kearfou R. B., Hu, C. and Novoa, M.A review of preconditioners for the interval Gauss-Seidel method. Interval Computations1 (1991), pp. 59–85.

    Google Scholar 

  14. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.PASCAL-SSC — language reference with examples. Springer-Verlag, Berlin etc., 1992.

    Google Scholar 

  15. Kulisch U. and Miranker, W. L.Computer arithimetic in theory and practice. Academic Press, New York, 1981.

    Google Scholar 

  16. Moore, R. E..Interial analysis. Prentice-Hall, Englewood Cliffs, 1966.

    Google Scholar 

  17. Neumaier, A.Interval methods for systems of equations. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  18. Stoer, J. and Bulirsch, R.Introduction to numerical analysis. Springer-Verlag, New York, 1980.

    Google Scholar 

  19. van der Waerden, B. L.Modern algebra, Fréderick Ungar, New York, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, C., Ratz, D., йегер, К. et al. A combined method for enclosing all solutions of nonlinear systems of polynomial equations. Reliable Comput 1, 41–64 (1995). https://doi.org/10.1007/BF02390521

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390521

Keywords

Navigation