Skip to main content
Log in

On the computational complexity of the solution of linear systems with moduli

О вычислительной сложности рещения линейных систем с модулями

  • Published:
Reliable Computing

Abstract

A problem of solvability for the system of equations of the formAx=D|x|+δ is investigated. This problem is proved to beNP-complete even in the case when the number of equations is equal to the number of variables, the matrixA is nonsingular,AD≥0,δ≥0, and it is initially known that the system has a finite (possibly zero) number of solutions. For an arbitrary system ofm equations ofn variables, under additional conditions that the matrixD is nonnegative and its rank is one, a polynomial-time algorithm (of the orderO((max{m, n})3)) has been found which allows to determine whether the system is solvable or not and to find one of such solutions in the case of solvability.

Abstract

Изучается задача разрешимости для системы уравнений видаAx=D|x|+δ. Показано, что эта задача являетсяNP-поляой даже в случае, когда число уравнений равно числу переменных, матрипаA невырождена,AD≥0,δ≥0 и заранее известно, что аистема имеет конечное (возможно, равное нулю) число решений. Для произвольной системыm уравнений отn переменных при донолнительном условии, что матрицаD не отрицательна и ее ранг равен единице, найден полиномиальный алгоритм (гюрядкаO((max{m, n})3)), позволяющий выяснить разрешимость этой системы и, в случае разрешимости, найти одно из решений.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, A. and Plemmons, R. J.Nonnegative matrices in the mathematical sciences. Academic Press, New York, 1979.

    Google Scholar 

  2. Garey, M. R. and Johnson, D. S.Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco, 1979.

    Google Scholar 

  3. Khatchiyan, L. G.A polynomial-time algorithm for linear programming. Soviet Math. Dok.20 (1) (1979), pp. 191–194.

    Google Scholar 

  4. Kupriyanova, L. V.Inner estimation of the united solution set to interval linear algebraic system. Reliable Computing1 (1) (1995), pp. 15–31.

    Article  MATH  MathSciNet  Google Scholar 

  5. Lakeyev, A. V.linear algebraic equations in Kaucher arithmetic. Reliable Computing, 1995, Supplement (Extended Abstracts of APIC’95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23–25, 1995), pp. 130–133.

  6. Neumaier, A.Interval methods for systems of equations. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  7. Rohn, J.Systems of linear interval equations. Linear Algebra Appl.126 (1989), pp. 39–78.

    Article  MATH  MathSciNet  Google Scholar 

  8. Shary, S. P.Algebraic approach to the interval linear static identification, tolerance and control problems, or One more application of Kaucher arithmetic. Reliable Computing2 (1) (1996), pp. 3–33.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

© A. V. Lakeyev, 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakeyev, A.V. On the computational complexity of the solution of linear systems with moduli. Reliable Comput 2, 125–131 (1996). https://doi.org/10.1007/BF02425914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02425914

Keywords

Navigation