Abstract
The results of a geometric model of cardiac tissue, used to compute the bidomain conductivity tensors during three phases of ischaemia, are described. Ischaemic conditions were simulated by model parameters being changed to match the morphological and electrical changes of three phases of ischaemia reported in literature. The simulated changes included collapse of the interstitial space, cell swelling and the closure of gap junctions. The model contained 64 myocytes described by 2 million tetrahedral elements, to which an external electric field was applied, and then the finite element method was used to compute the associated current density. In the first case, a reduction in the amount of interstitial space led to a reduction in extracellular longitudinal conductivity by about 20%, which is in the range of reported literature values. Moderate cell swelling in the order of 10–20% did not affect extracellular conductivity considerably. To match the reported drop in total tissue conductance reported in experimental studies during the third phase of ischaemia, a ten fold increase in the gap junction resistance was simulated. This ten-fold increase correlates well with the reported changes in gap junction densities in the literature.
References
Beardslee, M. A., Lerner, L. D., Tadros, P. N., Laing, J. G., Beyer, E. C., Yamada, K. A., Kléber, A. G., Schuessler, R. B., andSaffitz, J. E. (2000): ‘Dephosphyorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia.Circ. Res.,87, pp. 656–662.
Brown, A. M., Lee, K. S., andPowell, T. (1981): ‘Voltage clamp and internal perfusion of single rat heart muscle cells’,J. Physiol.,318, pp. 455–477
Carmeliet, E. (1999): ‘Cardiac ionic currents and acute ischemia: from channels to arrhythmias,’Physiol. Rev.,79, pp. 917–1017.
Chien, S., Usami, S., andSkalak, R. (1984): ‘Blood flow in small tubes’, inRenkin, E. M., andMichel, C. C. (Eds) ‘Handbook of physiology, section 2, The cardiovascular system, volume IV, Microcirculation part I’ (American Physiological Society, Bethesda, Maryland, 1984), pp. 217–249
Cinca, J., Warren, M., Carreno, A., Tresanchez, M., Armadans, L., Gomez, P., Soler-Soler, J. (1997): ‘Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning,’Circ.,96, pp. 3079–3086
Duffy, H. S., Ashton, A. W., O'Donnell, P., Coombs, W., Taffet, S. M., Delmar, M., andSpray, D. C. (2004): ‘Regulation of Connexin43 protein complexes by intracellular acidification’,Circ. Res.,94, pp. 215–222
Fleischhauer, J., Lehmann, L., andKléber, A. G. (1995): ‘Electrical resistances of interstitial and microvascular space and determinants of the extracellular electrical field and velocity of propagation in ventricular myocardium,’Circ.,92, pp. 587–594
Forbes, M. S., andSperelakis, N. (1995): ‘Ultrastructure of mammalian cardiac muscle,’Physiology and pathophysiology of the heart, 3rd edn‘ (Kluwer Academic Publishers, Norwell, MA, 1995). chap. 1, pp. 1–35
Foster, K. R., andSchwan, H. P. (1989): ‘Dielectric properties of tissues and biological materials: a critical review’,Crit. Rev. Biomed. Eng.,17, pp. 25–104
Henriquez, C. S., Tranqillo, J. V., Weinstein, D. M., Hsu, E. W., andJohnson, C. R. (2004): ‘Three-dimensional propagation in mathematic models: integrative model of the mouse heart’ (Saunders Company, Philadelphia, 2004), chap. 30, pp. 273–281
Hopenfeld, B., Stinstra, J. G., andMacLeod, R. S. (2004): ‘A mechanism for ST depression associated with contiguous subendocardial ischemia’,J. Cardiovasc. Electrophysiol.,15, pp. 1200–1206
Hopenfeld, B., Stinstra, J. G., andMacLeod, R. S. (2005): ‘The effect of conductivity on ST-segment epicardial potentials arising from subendocardial ischemia’,Ann. Biomed. Eng.,33, pp. 751–763
Roth, B. J. (2004): ‘Two-dimensional propagation in cardiac muscle’ (Saunders Company, Philadelphia, 2004), chap. 29, pp. 267–272
Jain, S. K., Schuessler, R. B., andSaffitz, J. E. (2003): ‘Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning’,Circ. Res.,92, pp. 1138–1144
Kléber, A. G., andRiegger, C. B. (1987): ‘Electrical constants of arterially perfused rabbit papillary muscle’,J. Physiol.,385, pp. 307–324
Metzger, P., andWeingart, R. (1985): ‘Electric current flow in cll pairs isolated from adult rat hearts’,J. Physiol.,366, pp. 177–195
Owens, L. M., Fralix, T. A., Murphy, E., Cascio, W. E., andGettes, L. S. (1996): ‘Correlation of ischemia-induced extracellular and intracellular ion changes to cell-to-cell electrical uncoupling in isolated blood-perfused rabbit hearts’,Circ.,94, pp. 10–13
Sachse, F. B. (2004): ‘Computational cardiology: modeling of anatomy, electrophysiology, and mechanic (LNCS 2966, Springer Press, Heidelberg, 2004)
Schwann, H. P., andKay, C. F. (1956): ‘The conductivity of living tissues’,Ann. N.Y. Acad. Sci.,65, pp. 1007–1013
Smith, W. T., Fleet, W. F., Johnson, T. A., Engle, C. L., andCascio, W. E. (1995): ‘The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling’,Circ.,92, pp. 3051–3060
Steenbergen, C., Hill, M. L., andJennings, R. B. (1985): ‘Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardiumin vitro’,Circ. Res.,57, pp. 864–875
Stinstra, J. G., Hopenfeld, B., andMacLeod, R. S. (2004): ‘Using models of the passive cardiac conductivity and full heart anisotropic bidomain to study the epicardial potentials in ischemia’. Proc., 26th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Soc., (2), pp. 3555–3558
Stinstra, J. G., Hopenfeld, B., andMacLeod, R. S. (2005): ‘On the passive cardiac conductivity’,Ann. Biomed. Eng.,33, pp. 1743–1751
Stinstra, J. G., andPeters, M. J. (2002): ‘The influence of fetoabdominal tissues on fetal ECGs and MCGs’,Arch. Physiol. Biochem.,110, pp. 165–176
Tranum-Jensen, J., Janse, M. J., Fiolet, J. W. T., Krieger, W. J. G., D'Alnoncourt, C. N., andDurrer, D. (1981): ‘Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart’,Circ. Res.,49, pp. 364–381
Trautman, E. D., andNewbower, R. S. (1983): ‘A practical analysis of the electrical conductivity of blood’,IEEE Trans. Biomed. Eng.,30, pp. 141–153
Weingart, R. (1986): ‘Electrical properties of the nexal membrane studied in rat ventricular cell pairs’,J. Physiol.,370, pp. 267–284
Wright, A. R., andRees, S. A. (1998): ‘Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types’,Pharmacol. Ther.,80, pp. 89–121
Yan, G. X., Chen, J., Yamada, K. A., Kléber, A. G., andCorr, P. B. (1996): ‘Contribution of shrinkage of extracellular space to extracellular K+ accumulation in myocardial ischemia of the rabbit’,J. Physiol.,490.1, pp. 215–228
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stinstra, J.G., Shome, S., Hopenfeld, B. et al. Modelling passive cardiac conductivity during ischaemia. Med. Biol. Eng. Comput. 43, 776–782 (2005). https://doi.org/10.1007/BF02430957
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02430957