Skip to main content
Log in

Proximity problems for points on a rectilinear plane with rectangular obstacles

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the following four problems for a setS ofk points on a plane, equipped with the rectilinear metric and containing a setR ofn disjoint rectangular obstacles (so that distance is measured by a shortest rectilinear path avoiding obstacles inR): (a) find aclosest pair of points inS, (b) find anearest neighbor for each point inS, (c) compute the rectilinearVoronoi diagram ofS, and (d) compute a rectilinearminimal spanning tree ofS. We describeO ((n+k) log(n+k))-time sequential algorithms for (a) and (b) based onplane-sweep, and the consideration of geometrically special types of shortest paths, so-calledz-first paths. For (c) we present anO ((n+k) log(n+k) logn)-time sequential algorithm that implements a sophisticateddivide-and-conquer scheme with an addedextension phase. In the extension phase of this scheme we introduce novel geometric structures, in particular so-calledz-diagrams, and techniques associated with the Voronoi diagram. Problem (d) can be reduced to (c) and solved inO ((n+k) log(n+k) logn) time as well. All our algorithms arenear-optimal, as well as easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

References

  1. B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon,Algorithmica 4 (1989), 109–140.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. J. Atallah, D. Chen, Parallel rectilinear shortest paths with rectangular obstacles,Proc. ACM Symp. on Parallel Algorithms and Architectures, 1990, pp. 270–279. Also inComput. Geom. Theory Appl. 1 (1991), 79–113.

  3. J. L. Bentley, M. I. Shamos, Divide-and-conquer in multidimensional space,Proc. ACM Symp. on Theory of Computing, 1976, pp. 220–230.

  4. D. Cheriton, R. E. Tarjan, Finding minimum spanning trees,SIAM J. Comput. 5 (1976), 724–742.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. L. Clarkson, S. Kapoor, P. M. Vaidya, Rectilinear shortest paths through polygonal obstacles inO(n(logn)2) time,Proc. ACM Symp. on Computational Geometry, 1987, pp. 251–257.

  6. P. J. de Rezende, D. T. Lee, Y. F. Wu, Rectilinear shortest paths with rectangular barriers,Proc. ACM Symp. on Computational Geometry, 1985, pp. 204–213. Also inDiscrete Comput. Geom. 4 (1989), 41–53.

  7. D. Dobkin, R. Lipton, On the complexity of computations under varying sets of primitives,J. Comput. System. Sci. 18 (1979), 86–91.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Guha, Parallel Algorithms for Polygonal and Rectilinear Geometry, Ph.D. Thesis, Computer Science and Engineering, University of Michigan, Ann Arbor, MI, 1991.

    Google Scholar 

  9. L. Guibas, J. Hershberger, D. Leven, M. Sharir R. Tarjan, Linear-time algorithms for visibility and shortest path problems inside a triangulated simple polygons,Algorithmica 2 (1987), 209–233.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. G. Kirkpatrick, Optimal search in planar subdivision,SIAM J. Comput. 12 (1983), 28–35.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. C. Larson, V. O. Li, Finding minimum rectilinear distance paths in the presence of barriers,Networks 11 (1981), 285–304.

    MATH  MathSciNet  Google Scholar 

  12. D. T. Lee, Two-dimensional Voronoi diagrams in theL p -metric,J. Assoc. Comput. Mach. 27 (1980), 604–618.

    MATH  MathSciNet  Google Scholar 

  13. D. T. Lee, C. D. Yang, T. H. Chen, Shortest rectilinear paths among weighted obstacles,Internat. J. Comput. Geom. Appl. 1 (1991), 109–204.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. S. B. Mitchell,L 1 shortest paths among polygonal obstacles in the plane,Algorithmica 8 (1992), 55–88.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. P. Prearata, M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  16. M. I. Shamos, D. Hoey, Closest-point problems,Proc. IEEE Symp. on Foundations of Computer Science, 1975, pp. 151–162.

  17. P. Widmayer, Y. F. Wu, C. K. Wong, On some distance problems in fixed orientations,SIAM J. Comput. 16 (1987), 728–246.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. F. Wu, P. Widmayer, M. D. F. Schlag, C. K. Wong, Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles,IEEE Trans. Comput. 36 (1987), 321–331.

    Google Scholar 

  19. C. D. Yang, D. T. Lee, C. K. Wong, On bends and lengths of rectilinear paths: a graph-theoretic approach,Internat. J. Comput. Geom. Appl. 2 (1992), 61–74.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. T. Lee.

An extended abstract appeared inProc. 13th Conf. on the Foundations of Software Technology and Theoretical Computer Science, Bombay, 1993, Springer-Verlag, pp. 218–227. Sumanta Guha was supported in part by a UW-Milwaukee Graduate School Research Committee Award. Ichiro Suzuki was supported in part by the National Science Foundation under Grants CCR-9004346 and IRI-9307506, the Office of Naval Research under Grant N00014-94-1-0284, and an endowed chair supported by Hitachi Ltd. at the Faculty of Engineering Science, Osaka University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guha, S., Suzuki, I. Proximity problems for points on a rectilinear plane with rectangular obstacles. Algorithmica 17, 281–307 (1997). https://doi.org/10.1007/BF02523193

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523193

Key Words

Navigation