Skip to main content
Log in

“The big sweep”: On the power of the wavefront approach to Voronoi diagrams

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that the wavefront approach to Voronoi diagrams (a deterministic line-sweep algorithm that does not use geometric transform) can be generalized to distance measures more general than the Euclidean metric. In fact, we provide the first worst-case optimal (O (n logn) time,O(n) space) algorithm that is valid for the full class of what has been callednice metrics in the plane. This also solves the previously open problem of providing anO (nlogn)-time plane-sweep algorithm for arbitraryL k -metrics. Nice metrics include all convex distance functions but also distance measures like the Moscow metric, and composed metrics. The algorithm is conceptually simple, but it copes with all possible deformations of the diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

References

  1. M. Atallah. Dynamic computational geometry.Comput. Math. Appl. 11, 1171–1181, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Aurenhammer. Voronoi diagrams—a survey of a fundamental data structure.ACM Comput. Surveys 23 (3), 345–405, 1991.

    Article  Google Scholar 

  3. K. Q. Brown. Voronoi diagrams from convex hulls.Inform. Process. Lett. 9 (5), 223–228, 1979.

    Article  MATH  Google Scholar 

  4. K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II.Discrete. Comput. Geom. 4, 387–421, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. P. Chew and R. L. Drysdale III. Voronoi diagrams based on convex distance functions.Proceedings of the 1st ACM Symposium on Computational Geometry, 1985, 235–244.

  6. R. Cole. Reported by C. Ó'Dúnlaing, 1989.

  7. F. Dehne and R. Klein. A sweepcircle algorithm for Voronoi diagrams. In H. Göttler and H. J. Schneider, editors,Graphtheoretic Concepts in Computer Science (WG '87), pp. 59–70, Staffelstein. LNCS 314, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  8. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements.Discrete Comput. Geom. 1, 25–44, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (2), 153–174, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. Ch. Icking, R. Klein, N.-M. Le, and L. Ma. Convex distance functions in 3D are different,Proceedings of the 9th ACM Symposium on Computational Geometry, 1993, pp. 116–123.

  11. R. Klein. Abstract Voronoi diagrams and their applications. In H. Noltemeier, editor,Computational Geometry and Its Applications (CG '88), pp. 148–157, Würzburg. LNCS 333, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  12. R. Klein.Concrete and Abstract Voronoi diagrams. LNCS 400, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  13. R. Klein, K. Mehlhorn, and St. Meiser On the construction of abstract Voronoi diagrams, II. In T. Asano, T. Ibaraki, H. Imai, and T. Nishizeki, editors,Algorithms (SIGAL '90), pp. 138–154, Tokyo. LNCS 450, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  14. R. Klein and D. Wood. Voronoi diagrams based on general metrics in the plane.Proceedings of the 5th Annual Symposium on Theoretical Aspects of Computer Science (STACS '88), pp. 281–291, Bordeaux. LNCS 294, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  15. M. L. Mazón and T. Recio. Voronoi diagrams based on strictly convex distances on the plane. Manuscript, Departamento De Matemáticas, Universidad de Cantabria, Santander, 1991.

    Google Scholar 

  16. K. Mehlhorn, St. Meiser, and C. O'Dúnlaing. On the construction of abstract Voronoi diagrams.Discrete Comput. Geom. 6, 211–224, 1991.

    MATH  MathSciNet  Google Scholar 

  17. R. Seidel. Constrained Delaunay Triangulations and Voronoi Diagrams with Obstacles. Technical Report 260, IIG-TU Graz, pages 178–191, 1988.

  18. M. I. Shamos and D. Hoey. Closest-point problems.Proceedings of the 16th IEEE Symposium on Foundations of Computer Science, 1975, pp. 151–162.

  19. G. M. Shute, L. L. Deneen, and C. D. Thomborson. AnO(n logn) plane-sweep algorithm forL 1 andL Delaunay triangulations,Algorithmica 6, 207–221, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. J. Guibas.

Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

Research partially supported by the Deutsche Forschungsgemeinschaft, Grant No. Kl 655/2-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehne, F., Klein, R. “The big sweep”: On the power of the wavefront approach to Voronoi diagrams. Algorithmica 17, 19–32 (1997). https://doi.org/10.1007/BF02523236

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523236

Key Words

Navigation