Skip to main content
Log in

Parallel algorithms for the hamiltonian cycle and hamiltonian path problems in semicomplete bipartite digraphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We give anO(log4 n)-timeO(n 2)-processor CRCW PRAM algorithm to find a hamiltonian cycle in a strong semicomplete bipartite digraph,B, provided that a factor ofB (i.e., a collection of vertex disjoint cycles covering the vertex set ofB) is computed in a preprocessing step. The factor is found (if it exists) using a bipartite matching algorithm, hence placing the whole algorithm in the class Random-NC.

We show that any parallel algorithm which can check the existence of a hamiltonian cycle in a strong semicomplete bipartite digraph in timeO(r(n)) usingp(n) processors can be used to check the existence of a perfect matching in a bipartite graph in timeO(r(n)+n 2 /p(n)) usingp(n) processors. Hence, our problem belongs to the class NC if and only if perfect matching in bipartite graphs belongs to NC.

We also consider the problem of finding a hamiltonian path in a semicomplete bipartite digraph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel tree contraction algorithm,J. Algorithms,10 (1989), 287–302.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. J. Anderson and G. L. Miller, Deterministic parallel list ranking,Proc. 3rd Egean Workshop on Computing, 1988, pp. 81–90.

  3. E. Bampis, M. El Haddad, Y. Manoussakis, and M. Santha, A parallel reduction of hamilton cycle to hamilton path in tournaments,J. Algorithms,19 (1995), 432–440.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bang-Jensen, Arc-local tournament digraphs: a generalization of tournaments and bipartite tournaments, submitted.

  5. J. Bang-Jensen, G. Gutin, and J. Huang, A sufficient condition for a complete multipartite digraph to be hamiltonian,Discrete Math., to appear.

  6. A. Bar-Noy and J. Naor, Sorting, minimal feedback sets, and Hamiltonian paths in tournaments,SIAM J. Discrete Math.,3 (1990), 7–20.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. W. Beineke and R. J. Wilson,Selected Topics in Graph Theory 3, Academic Press, New York, 1988.

    Google Scholar 

  8. J. A. Bondy and U. S. R. Murty,Graph Theory with Applications, MacMillan, New York, 1976.

    Google Scholar 

  9. R. P. Brent. The parallel evaluation of general arithmetic expressions,J. Assoc. Comput. Mach.,21 (1974), 201–208.

    MATH  MathSciNet  Google Scholar 

  10. R. Cole, Parallel merge sort,SIAM J. Comput.,17 (1988), 770–785.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Cole and U. Vishkin, Approximate and exact parallel scheduling with applications to list, tree and graph problems,Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986, pp. 478–491.

  12. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetric progressions,Proc. 19th ACM Symp. on Theory of Computing, 1987, pp. 1–6.

  13. A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya, Sublinear-time parallel algorithms for matching and related problems.Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988, pp. 174–185.

  14. G. Gutin, A criterion for complete bipartite digraphs to be hamiltonian,Vestsĩ Acad. Navuk BSSR Ser. Fĩz.-Mat. Navuk, No. 1 (1984), 99–100 (in Russian).

    Google Scholar 

  15. G. Gutin, Effective characterization of complete bipartite digraphs that have a hamiltonian path,Kibernetica, No. 4 (1985), 124–125 (in Russian).

    MATH  MathSciNet  Google Scholar 

  16. P. Hell and M. Rosenfeld, The complexity of finding generalized paths in tournaments,J. Algorithms,4 (1982), 303–309.

    Article  MathSciNet  Google Scholar 

  17. A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching,Inform. Process. Lett.,22 (1986), 57–60.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, inHandbook of Theoretical Computer Science, ed. J. Van. Leuwen, Elsevier, Amsterdam, 1990, pp. 869–941.

    Google Scholar 

  19. R. E. Ladner and M. J. Fisher, Parallel prefix sum computation.J. Assoc. Comput. Mach.,27 (1980), 830–838.

    Google Scholar 

  20. Y. Manoussakis, A linear-time algorithm for finding hamiltonian cycles in tournaments,Discrete Appl. Math.,36 (1992), 199–201.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. L. Miller, V. Ramachandran, and E. Kaltofen, Efficient parallel evaluation of straight line code and arithmetic circuits,SIAM J. Comput.,17 (1988), 687–695.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. L. Miller and J. Reif, Parallel tree contraction and its application,Proc. 26th IEEE Symp. on Foundations of Computer Science, 1985, pp. 478–489.

  23. K. Mulmuley, U. V. Vazirani, and V. B. Vazirani, Matching is as easy as matrix inversion,Combinatorica,7 (1987), 105–113.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. N. Frederickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang-Jensen, J., El Haddad, M., Manoussakis, Y. et al. Parallel algorithms for the hamiltonian cycle and hamiltonian path problems in semicomplete bipartite digraphs. Algorithmica 17, 67–87 (1997). https://doi.org/10.1007/BF02523239

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523239

Key Words

Navigation