Skip to main content
Log in

AnO(logk)-approximation algorithm for thek minimum spanning tree problem in the plane

  • Published:
Algorithmica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Givenn points in the Euclidean plane, we consider the problem of finding the minimum tree spanning anyk points. The problem isNP-hard and we give anO(logk)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Findingk points with minimum diameter and related problems.Journal of Algorithms, 12(1):38–56, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Awerbuch, Y. Azar. A. Blum, and S. Vempala. Improved approximation guarantees for minimum weightk-trees and prize-collecting salesmen. InProceedings, 27th Annual ACM Symposium on Theory of Computing, pages 277–283, 1995.

  3. A. Blum, P. Chalasani, and S. Vempala. A constant-factor approximation for thek-mst problem in the plane. InProceedings, 27th Annual ACM Symposium on Theory of Computing, pages 294–302, 1995.

  4. D. Eppstein. Faster geometric,k-point mst approximation. Technical Report 13, University of California, Irvine, CA, 1995.

    Google Scholar 

  5. M. Fischetti, H. W. Hamacher, K. Jornsten, and F. Maffioli. Weightedk-cardinality trees: complexity and polyhedral structure.Networks, 24:11–21, 1994.

    MATH  MathSciNet  Google Scholar 

  6. M. Fischetti, H. W. Hamacher, and F. Maffioli. Weightedk-cardinality trees. Technical Report 23, Politecnico di Milano, Milan, 1991.

    Google Scholar 

  7. O. Goldschmidt and D. S. Hochbaum.k-edge subgraph problems.Discrete Applied Mathematics, 1996, to appear.

  8. G. Kortsarz and D. Peleg. On choosing a dense subgraph. InProceedings, 34th Annual IEEE Symposium on Foundations of Computer Science, pages 692–701, 1993.

  9. F. Maffioli. Finding a best subtree of a tree. Technical Report 41, Politecnico di Milano, Milan, 1991.

    Google Scholar 

  10. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometrick-mst problem. InProceedings, 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 402–408, 1995.

  11. V. Radhakrishnan, S. Krumke, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Compact location problems. InProceedings, 13th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 238–247, 1993.

  12. R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees short and small. InProceedings, 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 546–555, 1993

  13. S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi, Facility dispersion problems: Heuristics and special cases. InProceedings, 2nd Workshop on Algorithms and Data Structures, pages 355–366, 1991.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. X. Goemans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, N., Hochbaum, D.S. AnO(logk)-approximation algorithm for thek minimum spanning tree problem in the plane. Algorithmica 18, 111–121 (1997). https://doi.org/10.1007/BF02523691

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523691

Key Words

Navigation