Abstract
Givenn points in the Euclidean plane, we consider the problem of finding the minimum tree spanning anyk points. The problem isNP-hard and we give anO(logk)-approximation algorithm.
Similar content being viewed by others
References
A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Findingk points with minimum diameter and related problems.Journal of Algorithms, 12(1):38–56, 1991.
B. Awerbuch, Y. Azar. A. Blum, and S. Vempala. Improved approximation guarantees for minimum weightk-trees and prize-collecting salesmen. InProceedings, 27th Annual ACM Symposium on Theory of Computing, pages 277–283, 1995.
A. Blum, P. Chalasani, and S. Vempala. A constant-factor approximation for thek-mst problem in the plane. InProceedings, 27th Annual ACM Symposium on Theory of Computing, pages 294–302, 1995.
D. Eppstein. Faster geometric,k-point mst approximation. Technical Report 13, University of California, Irvine, CA, 1995.
M. Fischetti, H. W. Hamacher, K. Jornsten, and F. Maffioli. Weightedk-cardinality trees: complexity and polyhedral structure.Networks, 24:11–21, 1994.
M. Fischetti, H. W. Hamacher, and F. Maffioli. Weightedk-cardinality trees. Technical Report 23, Politecnico di Milano, Milan, 1991.
O. Goldschmidt and D. S. Hochbaum.k-edge subgraph problems.Discrete Applied Mathematics, 1996, to appear.
G. Kortsarz and D. Peleg. On choosing a dense subgraph. InProceedings, 34th Annual IEEE Symposium on Foundations of Computer Science, pages 692–701, 1993.
F. Maffioli. Finding a best subtree of a tree. Technical Report 41, Politecnico di Milano, Milan, 1991.
J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometrick-mst problem. InProceedings, 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 402–408, 1995.
V. Radhakrishnan, S. Krumke, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Compact location problems. InProceedings, 13th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 238–247, 1993.
R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees short and small. InProceedings, 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 546–555, 1993
S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi, Facility dispersion problems: Heuristics and special cases. InProceedings, 2nd Workshop on Algorithms and Data Structures, pages 355–366, 1991.
Author information
Authors and Affiliations
Additional information
Communicated by M. X. Goemans.
Rights and permissions
About this article
Cite this article
Garg, N., Hochbaum, D.S. AnO(logk)-approximation algorithm for thek minimum spanning tree problem in the plane. Algorithmica 18, 111–121 (1997). https://doi.org/10.1007/BF02523691
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02523691