Skip to main content
Log in

Orthogonal queries in segments

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider theorthgonal clipping problem in a set of segments: Given a set ofn segments ind-dimensional space, we preprocess them into a data structure such that given an orthogonal query window, the segments intersecting it can be counted/reported efficiently.

We show that the efficiency of the data structure significantly depends on a geometric discrete parameterK named theProjected-image complexity, which becomes Θ(n 2) in the worst case but practically much smaller. If we useO(m) space, whereK log4d−7 nmn log4d−7 n, the query time isO((K/m)1/2 logmax{4, 4d−5} n). This is near to an Ω((K/m)1/2) lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agarwal, Ray Shooting and Other Applications of Spanning Trees with Low Stabbing Number,Proc. 5th ACM Comput. Geom., 1989, pp. 315–325.

  2. M. Atallah, Some Dynamic Computational Geometry Problems,Comput. Math. Appl. 11 (1985), 1171–1181.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Chazelle, Reporting and Counting Segment Intersections,J. Comput. System Sci. 32 (1986), 156–182.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Chazelle, Filtering Search: A New Approach to Query-Answering,SIAM J. Comput. 15 (1986), 703–724.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Chazelle, A Functional Approach to Data Structures and Its Use in Multidimensional Searching,SIAM J. Comput. 17 (1988), 427–462.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Chazelle, Lower Bounds on the Complexity of Polytope Range Searching,J. Amer. Math. Sci. 2 (1989), 637–666.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Chazelle, Lower Bounds for Orthogonal Range Searching, I. The Reporting Case,J. Assoc. Comput. Mach. 37 (1990), 200–212.

    MATH  MathSciNet  Google Scholar 

  8. B. Chazelle, M. Sharir, and E. Welzl, Quasi-Optimal Upper Bound for Simplex Range Searching and New Zone Theorems,Algorithmica 8 (1992), 407–429.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Cheng and R. Janardan, Space-Efficient Ray-Shooting and Intersection Searching,J. Algorithms 13 (1992), 670–692.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Dobkin and H. Edelsbrunner, Space Searching for Intersecting Objects,J. Algorithms 8 (1987), 348–361.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Driscoll, N. Sarnak, D. Slator, and R. Tarjan, Making Data Structure Persistent,J. Comput. System Sci. 38 (1989), 86–124.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Edahiro, K. Tanaka, T. Hoshino, and T. Asano, A Bucketing Algorithm for the Orthogonal Segment Intersection Search Problems and Its Practical Efficiency,Algorithmica 4 (1987), 61–76.

    Article  MathSciNet  Google Scholar 

  13. D. Knuth,Sorting and Searching: The Art of Computer Programming III, Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  14. K. Kuse, Private communication.

  15. G. Lueker, A Data Structure for Orthogonal Range Queries,Proc. 19th IEEE FOCS, 1978, pp. 28–34.

  16. J. Matoušek, Efficient Partition Trees,Discrete Comput. Geom. 8 (1992), 315–334.

    Article  MathSciNet  Google Scholar 

  17. J. Matoušek, Range Searching with Efficient Hierarchical Cuttings,Discrete Comput. Geom. 10 (1993), 157–182.

    MathSciNet  Google Scholar 

  18. N. Megiddo, Applying Parallel Computation Algorithms in the Design of Serial Algorithms,J. Assoc. Comput. Mach. 30 (1983), 852–865.

    MATH  MathSciNet  Google Scholar 

  19. M. H. Overmars,The Design of Dynamic Data Structures, LNCS 156, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  20. F. Preparata and M. Shamos,Computational Geometry, an Introduction, 2nd edition, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  21. T. Tokuyama, Orthogonal Range Queries in Segments and Triangles,Proc. 4th ISSAC, LNCS 834, Springer-Verlag, Berlin, 1994, pp. 505–513.

    Google Scholar 

  22. D. E. Willard, New Data Structures for Orthogonal Range Queries,SIAM J. Comput. 14 (1985), 232–253.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. C. Yao, Space-Time Tradeoff for Answering Range Queries,Proc. 14th ACM STOC, 1982, pp. 128–136.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Chazelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuyama, T. Orthogonal queries in segments. Algorithmica 18, 229–245 (1997). https://doi.org/10.1007/BF02526035

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02526035

Key Words

Navigation