Skip to main content
Log in

A systolic algorithm for riccati and lyapunov equations

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

Riccati and Lyapunov equations can be solved using the recursive matrix sign method applied to symmetric matrices constructed from the corresponding Hamiltonian matrices. In this paper we derive an efficient systolic implementation of that algorithm where theLDL T andUDU T decompositions of those symmetric matrices are propagated. As a result the solution of a class of Riccati and Lyapunov equations can be obtained inO(n) time steps on a bidimensional (triangular) grid ofO(n 2) processors, leading to an optimal speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A] B. D. O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation,Internat. J. Control,28 (1978), 295–306.

    MathSciNet  Google Scholar 

  • [B1] A. Y. Barraud, Investigations autour de la fonction signe d'une matrice. Application a l'équation de Riccati,RAIRO Automat.,13 (1979), 335–368.

    MathSciNet  Google Scholar 

  • [BS] R. Bartels and G. Stewart, Solution of the matrix equationAX+XB=C, Comm. ACM,15 (1972), 820–826.

    Article  Google Scholar 

  • [B2] J. Bognar,Indefinite Inner Product Spaces, Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

  • [BBVH] A. Bojanczyk, R. Brent, P. Van Dooren, and F. de Hoog, Downdating the Cholesky factorization,SIAM J. Sci. Statist. Comput.,8 (1987), 210–221.

    Article  MathSciNet  Google Scholar 

  • [BL] R. P. Brent and F. T. Luk, Computing the Cholesky Factorization Using a Systolic Architecture, Report TR-CS-82-08, Department of Computer Science, Australian National University, 1982; alsoAustral. Comput. Sci. Commun.,5 (1983), 295–302.

  • [BP] J. R. Bunch, and B. N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations,SIAM J. Numer. Anal.,8 (1971), 639–655.

    Article  MathSciNet  Google Scholar 

  • [B3] R. Byers, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation Ph.D. thesis, Cornell University, Ithaca, NY, 1983.

    Google Scholar 

  • [B4] R. Byers, Solving the algebraic Riccati equation with the matrix sign function,Linear Algebra Appl.,85 (1987), 267–279.

    Article  MathSciNet  Google Scholar 

  • [DS] J. J. Dongarra and D. C. Sorensen, Linear algebra on high performance computers,Appl. Math. Comput.,20 (1986), 57–88.

    Article  MathSciNet  Google Scholar 

  • [GL] J. Gardiner and A. Laub, A generalization of the matrix-sign-function solution for algebraic Riccati equations,Internat. J. Control,44 (1986), 823–832.

    Google Scholar 

  • [GS] G. H. Golub and M. A. Saunders, Linear least squares and quadratic programming, inInteger and Nonlinear Programming II (J. Abadie ed.), pp. 229–256, North Holland, Amsterdam, 1970.

    Google Scholar 

  • [GV] G. H. Golub and C. F. Van Loan,Matrix Computations, North Oxford Academic, Oxford, 1983.

    MATH  Google Scholar 

  • [H1] S. Hammarling, Numerical solution of the stable non-negative definite Lyapunov equation,IMA J. Numer. Anal.,2 (1982), 303–323.

    Article  MathSciNet  Google Scholar 

  • [H2] N. J. Higham, Newton's method for the matrix square root,Math. Comp.,46 (1986) 537–549.

    Article  MathSciNet  Google Scholar 

  • [HB] K. Hwang and F. A. Briggs,Computer Architecture and Parallel Processing, McGraw-Hill, New York, 1984.

    MATH  Google Scholar 

  • [K] H. T. Kung, Why systolic architectures?IEEE Trans. Comput.,15 (1983), 37–46.

    MathSciNet  Google Scholar 

  • [KL] H. T. Kung and C. E. Leiserson, Algorithms for VLSI processor arrays, inIntroduction to VLSI Systems (C. Mead and L. Conway, eds.), pp. 271–292, Addison-Wesley, Reading, MA, 1980.

    Google Scholar 

  • [L1] A. Laub, A Schur method for solving the algebraic Riccati equation,IEEE Trans. Automat. Control,24 (1979), 913–921.

    Article  MathSciNet  Google Scholar 

  • [L2] A. Laub, Schur techniques in invariant embedding methods for solving two-point boundary value problems,Proceedings of the 21 st IEEE Conference on Decision and Control, Orlando, Florida, 1982, pp. 56–61.

  • [LH] C. L. Lawson and R. J. Hanson,Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, 1974.

    MATH  Google Scholar 

  • [L3] F. T. Luk, A triangular processor array for computing singular values,Linear Algebra Appl.,77 (1986), 259–273.

    Article  Google Scholar 

  • [L4] F. T. Luk, Architectures for computing eigenvalues and SVDs, inHighly Parallel Signal Processing Architectures, pp. 24–33, Proceedings of the Society of Photo-optical Instrumentation Engineers, Vol. 614, 1986.

  • [OS] D. P. O'Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations,Comm. ACM,28 (1985), 840–853.

    Article  MathSciNet  Google Scholar 

  • [PV] C. C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices,Linear Algebra Appl.,41 (1981), 11–32.

    Article  MathSciNet  Google Scholar 

  • [PLS] T. Pappas, A. Laub, and N. Sandell, On the discrete-time algebraic Riccati equation,IEEE Trans. Automat. Control,25 (1980), 631–641.

    Article  MathSciNet  Google Scholar 

  • [U] F. Uhlig, Inertia and eigenvalue relations between symmetrized and symmetrizing matrices for the real and the general field case,Linear Algebra Appl.,35 (1981), 203–226.

    Article  MathSciNet  Google Scholar 

  • [V] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations,SIAM J. Sci. Statist. Comput.,2 (1981), 121–135.

    Article  MathSciNet  Google Scholar 

  • [W] J. H. Wilkinson,The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlier, J.P., Van Dooren, P. A systolic algorithm for riccati and lyapunov equations. Math. Control Signal Systems 2, 109–136 (1989). https://doi.org/10.1007/BF02551818

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551818

Key words

Navigation