Skip to main content
Log in

Some remarks on universal graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

LetΓ be a class of countable graphs, and let ℱ(Γ) denote the class of all countable graphs that do not contain any subgraph isomorphic to a member ofΓ. Furthermore, let and denote the class of all subdivisions of graphs inΓ and the class of all graphs contracting to a member ofΓ, respectively. As the main result of this paper it is decided which of the classes ℱ(TK n) and ℱ(HK n),n≦ℵ0, contain a universal element. In fact, for ℱ(TK 4)=ℱ(HK 4) a strongly universal graph is constructed, whereas for 5≦n≦ℵ0 the classes ℱ(TK n) and ℱ(HK n) have no universal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bollobás,Extremal Graph Theory, Academic Press, London 1978.

    MATH  Google Scholar 

  2. R. Diestel, On Universal Graphs With Forbidden Topological Subgraphs, to appear inEurop. J. Combinatorics.

  3. R. Diestel, On the Problem of Finding Small Subdivision and Homomorphism Bases for Classes of Countable Graphs, to appear inDiscrete Math.

  4. R. Diestel, Simplicial Decompositions of Graphs — Some Uniqueness Results, submitted.

  5. R. Halin,Graphentheorie II, Wissenschaftliche Buchgesellschaft, Darmstadt 1981.

  6. R. Halin, Zur Klassifikation der endlichen Graphen nach H. Hadwiger und K. Wagner.Math. Ann.172 (1967), 46–78.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Halin andH. A. Jung, Über Minimalstrukturen von Graphen, insbesondere vonn-zusammenhängenden Graphen,Math. Ann.152 (1963), 75–94.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Komjáth andJ. Pach, Universal Graphs Without Large Bipartite Subgraphs,Mathematika,31 (1984), 282–290.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Pach, A Problem of Ulam on Planar Graphs,Europ. J. Combinatorics2 (1982), 357–361.

    MathSciNet  Google Scholar 

  10. R. Rado, Universal Graphs and Universal Functions,Acta Arith.9 (1964), 331–340.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Klaus Wagner on his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diestel, R., Halin, R. & Vogler, W. Some remarks on universal graphs. Combinatorica 5, 283–293 (1985). https://doi.org/10.1007/BF02579242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579242

AMS subject classification (1980)