Abstract
LetP be a finite partially ordered set. The lengthl(x) of an elementx ofP is defined by the maximal number of elements, which lie in a chain withx at the top, reduced by one. Letw(P) (d(P)) be the maximal number of elements ofP which have the same length (which form an antichain). Further let\(p^n : = \underbrace {PX...XP}_{n - times}\). The numbers\(r_k : = \mathop {\max }\limits_{P:|P| = k} \frac{{d(P)}}{{w(P)}}\) and\(s_k : = \mathop {\max }\limits_{P:|P| = k} \mathop {\lim }\limits_{n \to \infty } \frac{{d(P^n )}}{{w(P^n )}}\) as well as all partially ordered sets for which these maxima are attained are determined.
Similar content being viewed by others
References
V. B. Alekseev, O čisle monotonnychk-značnych funkcij.Problemy Kibernetiki,28 (1974), 5–24.
K. Engel, Optimal representations, LYM posets, Peck posets, and the Ahlswede—Daykin inequality,Rostock. Math. Kolloq.,26 (1984), 63–68.
K. Engel andH.-D. O. F. Gronau, Sperner theory in partially ordered sets,BSB B. G. Teubner Verlagsgesellschaft, Leipzig, (1985),to appear.
K. Engel andN. N. Kuzjurin, An asymptotic formula for the maximum size of anh-family in products of partially ordered sets,J. Combin. Theory Ser. A,37 (1984), 337–347.
C. Greene andD. J. Kleitman, Proof techniques in the theory of finite sets,in: Studies in Combinatorics (G.-C. Rota, ed.), MAA Studies in Math. 17,Washington, D. C., (1978), 22–79.
J. R. Griggs, The Sperner property,in: Ordres: Description et Roles (Proc. Lyon 1982, M. Pouzet, ed.), Annals of Discrete Math., (1984), 371–387.
V. K. Korobkov, Nekotorye obobščenia zadači „rasšifrovki“ monotonnych funkcij algebry logiki,Diskret. Analiz,5 (1965), 19–25.
V. V. Petrov,Sums of independent random variables, Akademie-Verlag, Berlin, 1975.
D. B. West, Extremal problems in partially ordered sets,in: Ordered Sets (Proc. Banff 1981, I. Rival, ed.), D. Reidel, Dordrecht, (1982), 473–521.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Engel, K., Kuzjurin, N.N. About the ratio of the size of a maximum antichain to the size of a maximum level in finite partially ordered sets. Combinatorica 5, 301–309 (1985). https://doi.org/10.1007/BF02579244
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02579244