Skip to main content
Log in

How many atoms can be defined by boxes?

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We study the functionb(n, d), the maximal number of atoms defined byn d-dimensional boxes, i.e. parallelopipeds in thed-dimensional Euclidean space with sides parallel to the coordinate axes.

We characterize extremal interval families definingb(n, 1)=2n-1 atoms and we show thatb(n, 2)=2n 2-6n+7.

We prove that for everyd,\(b^* (d) = \mathop {\lim }\limits_{n \to \infty } b(n,d)/n^d \) exists and\(1 \leqq (d/2)\sqrt[d]{{b^* (d)}} \leqq e\).

Moreover, we obtainb*(3)=8/9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Fulkerson andO. A. Gross, Incidence matrices with the consecutive l’s property,Bull. Amer. Math. Soc. 70 (1964), 681–684.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.

  3. B. Grünbaum,Arrangements and spreads, Amer. Math. Soc., Providence, 1972.

    MATH  Google Scholar 

  4. A. Gyárfás, J. Lehel andZs. Tuza, The structure of rectangle families dividing the plane into maximal number of atoms,Discrete Mathematics 52 (1984), 177–198.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Rado, Atoms of families of sets,Combinatorica 2 (1982), 311–314.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyárfás, A., Lehel, J. & Tuza, Z. How many atoms can be defined by boxes?. Combinatorica 5, 193–204 (1985). https://doi.org/10.1007/BF02579362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579362

AMS subject classification (1980)