Skip to main content
Log in

A Ramsey-Sperner theorem

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Letnk≥1 be integers and letf(n, k) be the smallest integer for which the following holds: If ℱ is a family of subsets of ann-setX with |ℱ|<f(n,k) then for everyk-coloring ofX there existA B ∈ ℱ,A∈B, A⊂B such thatB-A is monochromatic. Here it is proven that for a fixedk there exist constantsc k andd k such that\(c_k (1 + o(1))< f(n,k)\sqrt {{n \mathord{\left/ {\vphantom {n {2^a }}} \right. \kern-\nulldelimiterspace} {2^a }}}< d_k (1 + o(1))\) and\(c_k = \sqrt {{k \mathord{\left/ {\vphantom {k {2\log k}}} \right. \kern-\nulldelimiterspace} {2\log k}}} (1 + o(1)) = d_k \) ask→∞. The proofs of both the lower and the upper bounds use probabilistic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Bruijn, N.G., Kruijswijk, D., Tengbergen, C. van E.: On the set of divisors of a number. Nierw Arch. Wisk.23, 191–193 (1949-51).

    Google Scholar 

  2. Chung, F.R.K., Graham, R.L.: private communication

  3. Erdös, P.L., Katona, G.O.H.: The convex hull of theM-part Sperner families (to appear)

  4. Griggs, J.R., Kleitman, D.J.: A three part Sperner theorem. Discrete Math.17, 281–289 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Griggs, J.R.: Another three-part Sperner theorem. Stud. Appl. Math.57, 181–184 (1977).

    MathSciNet  Google Scholar 

  6. Griggs, J.R.: The Littlewood-Offord problem: tightest packing and an M-part Sperner theorem. Europ. J. Comb.1, 225–234 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Griggs, J. R., Odlyzko, A.M., Shearer, J.B.:K-color Sperner theorems (manuscript)

  8. Katona, G.O.H.: On a conjecture of Erdös and a stronger form of Sperner's theorem. Stud. Sci. Math. Hung.1, 59–63 (1966)

    MATH  MathSciNet  Google Scholar 

  9. Katona, G.O.H.: A three part Sperner theorem. Stud. Sci. Math. Hung.8, 379–390 (1973)

    MathSciNet  Google Scholar 

  10. Kleitman, D.J.: On a lemma of Littlewood and Offord on the distribution of certain sums. Math. Z.90, 251–259 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rényi, A.: Probability Theory. North-Holland, American Elsevier 1970

    Google Scholar 

  12. Rödl, V.: The maximum number of sets in a family not containing a Boolean algebra of dimensiond (manuscript)

  13. Sali, A.: Stronger form of anM-part Sperner theorem. Europ. J. Comb.4, 179–183 (1983)

    MATH  MathSciNet  Google Scholar 

  14. Sali, A.: A Spermer-type theorem. Order (submitted)

  15. Spencer, J.: Sequences with small discrepancy relative ton events. Compos. Math.47, 365–392 (1982)

    MATH  Google Scholar 

  16. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z.27, 544–548 (1928)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füredi, Z. A Ramsey-Sperner theorem. Graphs and Combinatorics 1, 51–56 (1985). https://doi.org/10.1007/BF02582928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02582928

Keywords

Navigation