Skip to main content
Log in

Holes in ordered sets

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We pursue the technique of “holes” to study the retracts of an ordered set. This is applied to establish a close connection between the class of absolute retracts and the class of dismantlable ordered sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffus, D, Pouzet, M.: Representing ordered sets by chains. In: Orders; Descriptions and Roles, edited by M. Pouzet, D. Richard. Ann. Discrete Math.23, 81–98 (1984)

  2. Duffus, D., Rival, I.: Crowns in dismantlable partally ordered sets. Colloq. Math. Soc. Janos Bolyai18, 271–292 (1978)

    MathSciNet  Google Scholar 

  3. Duffus, D., Rival, I.: A structure theory for ordered sets. Discrete Math.35, 53–118 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hell, P., Rival, I.: Absolute retracts and varieties of reflexive graphs. Canad. J. Math. (to appear)

  5. Misane, D.: Rétracts absolus d'ensembles ordonnés et de graphes. Propriété du point fixe, Thése de doctorat de 3-ème cycle. Univ. Claude Bernard (Lyon I) 1984

    Google Scholar 

  6. Nevermann, P.: Order varieties generated byV-semilattices of finite width. Discrete Math.53, 167–171 (1984)

    Article  MathSciNet  Google Scholar 

  7. Nevermann, P., Wille, R.: The strong selection property and ordered sets of finite, length. Algebra Univers.18, 18–28 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nowakowski, R.J., Rival, I.: Fixed-edge theorem for graphs with loops. J. Graph Theory3, 339–350 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nowakowski, R.J., Rival, I.: The smallest graph variety containing all paths. Discrete Math.43, 223–234 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pouzet, M., Rival, I.: Every countable lattice is a retract of a direct product of chains Algebra Univers.18, 295–307 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Quilliot, A.: Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques. Thèse d'état. Univ. de Paris VI 1983

  12. Quilliot, A.: An application of the Helly property to the partially ordered sets. J. Comb. Theory (A)35, 185–198 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rival, I., Wille, R.: The smallest order variety containing all chains. Discrete Math.35, 203–212 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stong, R.E.: Finite topological spaces. Trans. Amer. Math. Soc.123, 325–340 (1966)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevermann, P., Rival, I. Holes in ordered sets. Graphs and Combinatorics 1, 339–350 (1985). https://doi.org/10.1007/BF02582962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02582962

Keywords