Abstract
We pursue the technique of “holes” to study the retracts of an ordered set. This is applied to establish a close connection between the class of absolute retracts and the class of dismantlable ordered sets.
Similar content being viewed by others
References
Duffus, D, Pouzet, M.: Representing ordered sets by chains. In: Orders; Descriptions and Roles, edited by M. Pouzet, D. Richard. Ann. Discrete Math.23, 81–98 (1984)
Duffus, D., Rival, I.: Crowns in dismantlable partally ordered sets. Colloq. Math. Soc. Janos Bolyai18, 271–292 (1978)
Duffus, D., Rival, I.: A structure theory for ordered sets. Discrete Math.35, 53–118 (1981)
Hell, P., Rival, I.: Absolute retracts and varieties of reflexive graphs. Canad. J. Math. (to appear)
Misane, D.: Rétracts absolus d'ensembles ordonnés et de graphes. Propriété du point fixe, Thése de doctorat de 3-ème cycle. Univ. Claude Bernard (Lyon I) 1984
Nevermann, P.: Order varieties generated byV-semilattices of finite width. Discrete Math.53, 167–171 (1984)
Nevermann, P., Wille, R.: The strong selection property and ordered sets of finite, length. Algebra Univers.18, 18–28 (1984)
Nowakowski, R.J., Rival, I.: Fixed-edge theorem for graphs with loops. J. Graph Theory3, 339–350 (1979)
Nowakowski, R.J., Rival, I.: The smallest graph variety containing all paths. Discrete Math.43, 223–234 (1983)
Pouzet, M., Rival, I.: Every countable lattice is a retract of a direct product of chains Algebra Univers.18, 295–307 (1984)
Quilliot, A.: Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques. Thèse d'état. Univ. de Paris VI 1983
Quilliot, A.: An application of the Helly property to the partially ordered sets. J. Comb. Theory (A)35, 185–198 (1983)
Rival, I., Wille, R.: The smallest order variety containing all chains. Discrete Math.35, 203–212 (1981)
Stong, R.E.: Finite topological spaces. Trans. Amer. Math. Soc.123, 325–340 (1966)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nevermann, P., Rival, I. Holes in ordered sets. Graphs and Combinatorics 1, 339–350 (1985). https://doi.org/10.1007/BF02582962
Issue Date:
DOI: https://doi.org/10.1007/BF02582962