Skip to main content
Log in

Convex infinite horizon programs

  • Published:
Mathematical Programming Submit manuscript

Abstract

We establish conditions under which a sequence of finite horizon convex programs monotonically increases in value to the value of the infinite program; a subsequence of optimal solutions converges to the optimal solution of the infinite problem. If the conditions we impose fail, then (roughtly) the optimal value of the infinite horizon problem is an improper convex function. Under more restrictive conditions we establish the necessary and sufficient conditions for optimality. This constructive procedure gives us a way to solve the infinite (long range) problem by solving a finite (short range) problem. It appears to work well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Tal, E.E. Rosinger and A. Ben-Israel, “A Helly-type theorem and semi-infinite programming”, in: C.V. Coffman and G.J. Fix, eds.,Constructive approaches to mathematical models (Academic Press, New York, 1979) pp. 127–134.

    Google Scholar 

  2. G.B. Dantzig and A.S. Manne, “A complementary algorithm for an optimal capital path with invariant proportions”.Journal of Economic Theory 9 (1974) 312–323.

    Article  Google Scholar 

  3. N. Dunford and J.T. Schwartz,Linear operators, Part I (Wiley, New York, 1957).

    Google Scholar 

  4. J.J.M. Evers, “The dynamics of concave input/output processes”, in: J. Kiens, ed.,Convex analysis and mathematical economics, Lecture Notes in Economics and Mathematical Systems 168, (Springer, Berlin, 1979) pp. 73–121.

    Google Scholar 

  5. D. Gale, “On optimal development in a multisector economy”,Review of Economic Studies 34 (1967) 1–24.

    Article  MathSciNet  Google Scholar 

  6. A.J. Goldman, “Resolution and separation theorems for polyhedral convex sets”, in: H.W. Kuhn and A.W. Tucker, eds.,Linear algebra and related systems, Annals of Mathematics Studies 38 (Princeton University Press, Princeton, NJ, 1956) pp. 41–51.

    Google Scholar 

  7. R.C. Grinold, “Infinite horizon programs”,Management Science 18 (1971) 157–170.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.C. Grinold, “Finite horizon approximations of infinite horizon linear programs”,Mathematical Programming 12 (1977) 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.C. Grinold, “Time horizons in energy planning models”, in: W.T. Ziemba and S.L. Schwartz, eds.,Energy policy modeling: United States and Canadian Experiences 2 (Martinus Nijhoff Publishing, Boston, MA, 1980) pp. 216–237.

    Google Scholar 

  10. D.F. Karney, “Duality gaps in semi-infinite linear programming, an approximation problem”,Mathematical Programming 20 (1981) 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  11. A.S. Manne, “E.T.A: A model for energy technology assessments”,Bell Journal of Economics 7 (1976) 379–406.

    Article  Google Scholar 

  12. L. McKenzie, “Turnpike theory”,Econometrica 4 (1976) 841–866.

    Article  MathSciNet  Google Scholar 

  13. A. Propoi and V. Krinovozhko, “The simplex method for dynamic linear programs”, Report RR-77-14, IIASA, Laxenburg, Austria (1978).

    MATH  Google Scholar 

  14. R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinold, R. Convex infinite horizon programs. Mathematical Programming 25, 64–82 (1983). https://doi.org/10.1007/BF02591719

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591719

Key words

Navigation