Skip to main content
Log in

Variable metric relaxation methods, part II: The ellipsoid method

  • Published:
Mathematical Programming Submit manuscript

Abstract

The deepest, or least shallow, cut ellipsoid method is a polynomial (time and space) method which finds an ellipsoid, representable by polynomial space integers, such that the maximal ellipsoidal distance relaxation method using this fixed ellipsoid is polynomial: this is equivalent to finding a linear transforming such that the maximal distance relaxation method of Agmon, Motzkin and Schoenberg in this transformed space is polynomial. If perfect arithmetic is used, then the sequence of ellipsoids generated by the method converges to a set of ellipsoids, which share some of the properties of the classical Hessian at an optimum point of a function; and thus the ellipsoid method is quite analogous to a variable metric quasi-Newton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, “The relaxation method for linear inequalities”, Canadian Journal of Mathematics 6 (1954) 382–392.

    MATH  MathSciNet  Google Scholar 

  2. R.G. Bland, D. Goldfarb and M.J. Todd, “The ellipsoid method: A survey”, Operations Research 29 (1981) 1039–1091.

    MATH  MathSciNet  Google Scholar 

  3. T. Bonnensen and W. Fenchel,Theorie der Konvexen Körper (Springer-Verlag, Berlin, 1934; Reprint: Chelsea, New York, 1948).

    Google Scholar 

  4. L. Dantzer, D. Laugwitz and H. Lenz, “Über das Löwnersche Ellipsoid und sein Analogon unter der einem Eikörper einbeschriebenen Ellipisoiden”, Archiv der Mathematik 8 (1957) 214–219.

    Article  MathSciNet  Google Scholar 

  5. J.L. Goffin, “The relaxation method for solving systems of linear inequalities”, Mathematics of Operations Research 5 (1980) 388–414.

    MATH  MathSciNet  Google Scholar 

  6. J.L. Goffin, “On the nonpolynomiality of the relaxation method for systems of linear inequalities”, Mathematical Programming 22 (1983) 93–103.

    Article  MathSciNet  Google Scholar 

  7. J.L. Goffin, “Convergence of a cyclic ellipsoid algorithm for systems of linear equalities”, Mathematical Programming 22 (1982) 239–260.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.L. Goffin, “Variable metric relaxation methods, part I: A conceptual algorithm”, Technical Report SOL 81-16, Systems Optimization Laboratory, Operations Research Department, Stanford University (Stanford, California, 1981).

    Google Scholar 

  9. J.L. Goffin and A.J. Hoffman, “On the relationship between the Hausdorff distance and matric distances of ellipsoids”, Linear Algebra and Its Applications 52/53 (1983) 301–313.

    MathSciNet  Google Scholar 

  10. M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica 1 (1981) 169–197.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Grünbaum, “Measures of symmetry for convex sets”, in: V.L. Klee, ed. Convexity, Proceedings of Symposia in Pure Mathematics VII (American Mathematical Society, Providence, Rhode Island, 1963) pp. 233–270.

    Google Scholar 

  12. F. John, “Extremum problems with inequalities as subsidiary conditions”, in: Courant Anniversary Volume, Studies and Essays presented to R. Courant on his 60th birthday, January 8, 1948 (Interscience Publishers, New York, NY, 1948) pp. 187–204.

    Google Scholar 

  13. L.G. Khacian, “A polynomial algorithm in linear programming”, Doklady Akademiia Nauk USSR 244 (5) (1979) 1093–1095; translated in Soviet Mathematics Doklady 20 (1) (1979) 191–194.

    Google Scholar 

  14. L.G. Khacian, “Polynomial algorithms in linear programming” Zurnal Vycislitel'noi Matematiki i Matematiceskoi Fiziki 20 (1) (1980) 51–68; translated in USSR Computational Mathematics and Mathematical Physics 20 (1) (1980) 53–72.

    Google Scholar 

  15. K. Leichtweiss, “Über die affine Excentrizität konvexer Körper”, Archiv der Mathematik 10 (1959) 197–199.

    Article  MathSciNet  Google Scholar 

  16. H.W. Lenstra Jr., “Integer programming with a fixed number of variables”, Mathematics of Operations Research 8 (1983) 538–548.

    MATH  MathSciNet  Google Scholar 

  17. T. Motzkin and I.J. Schoenberg, “The relaxation method for linear inequalities”, Canadian Journal of Mathematics 6 (1954) 393–404.

    MATH  MathSciNet  Google Scholar 

  18. N.Z. Shor, “Utilization of the operation of space dilation in the minimization of convex functions”, Kibernetika 6 (1) (1970) 6–12; translated in Cybernetics 6 (1) (1970) 7–15.

    MathSciNet  Google Scholar 

  19. N.Z. Shor, “New development trends in nondifferentiable optimization”, Kibernetika 13 (6) (1977) 87–91; translated in Cybernetics 13 (6) (1977) 881–886.

    Google Scholar 

  20. M.J. Todd, “Some remarks on the relaxation method for linear inequalities”, Technical Report 419, School of Operations Research and Industrial Engineering, Cornell University (Ithaca, New York, 1979).

    Google Scholar 

  21. M.J. Todd, “Minimum volume ellipsoid containing part of a given ellipsoid”, Mathematics of Operations Research 7 (1982) 253–261.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. von zur Gathen and M. Sieveking, “A bound on solution of linear integer equalities and inequalities,” Proceedings of the American Mathematical Society 72 (1978) 155–158.

    Article  MATH  MathSciNet  Google Scholar 

  23. D.B. Yudin and A.S. Nemirovskii, “Evaluation of the informational complexity of mathemetical programming problems”, Ekonimika i Mathematicheskie Metody 12 (1976) 128–142; translated in Matekon: Translations of Russian and East European Mathematical Economics 13 No. 2 Winter ‘76–’77 3–25.

    MATH  Google Scholar 

  24. D.B. Yudin and A.S. Nemirovskii, “Informational complexity and effective methods of solution for convex extremal problems”, Ekonomika i Mathematicheskie Metody 12 (1976) 357–369; translated in Matekon: Translations of Russian and East European Mathematical Economics 13 No. 2 Spring '77 25–45.

    MATH  Google Scholar 

  25. V.L. Zaguskin, “On circumscribed and inscribed ellipsoids of extremal volume”, Uspehi Matematicheski Nauk 13 (6) (1956) 89–92 (in Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the F.C.A.C. of Quebec, and the N.S.E.R.C. of Canada under Grant A 4152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffin, JL. Variable metric relaxation methods, part II: The ellipsoid method. Mathematical Programming 30, 147–162 (1984). https://doi.org/10.1007/BF02591882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591882

Key Words