Skip to main content
Log in

Input optimization: I. Optimal realizations of mathematical models

  • Published:
Mathematical Programming Submit manuscript

Abstract

Mathematical models are considered as input-output systems. The input is data (technological coefficients, available energy, prices) and the output is the feasible set, the set of optimal solutions, and the optimal value. We study when output is a continuous function of input and identify optimal (minimal) realizations of mathematical models. These are states of the model having the property that every stable perturbation of input results in a locally worse (higher) value of the optimal value function. In input optimization we “optimize” mathematical model rather than a specific mathematical program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abrams and L. Kerzner, “A simplified test for optimality”,Journal of Optimization Theory and Applications 25 (1978) 161–179.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.H. Avila, Jr., “Continuation methods for nonlinear equations”, Ph.D. thesis, University of Maryland (College Park, MD, 1971).

    Google Scholar 

  3. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Non-linear parametric optimization (Akademie-Verlag, Berlin, 1982).

    Google Scholar 

  4. A. Ben-Israel and A. Charnes, “An explicit solution of a special class of linear programming problems”,Operations Research 16 (1968) 1167–1175.

    MathSciNet  Google Scholar 

  5. A. Ben-Israel and T.N.E. Greville,Generalized inverses Theory and Applications (Wiley Interscience, New York, 1974).

    MATH  Google Scholar 

  6. A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in nonlinear programming: A feasible directions approach (Wiley-Interscience, New York, 1981).

    MATH  Google Scholar 

  7. B. Brosowski, “On parametric linear optimization”, in: R. Henn, B. Korte and W. Oettli, eds.,Optimization and operations research Springer-Verlag Lecture Notes in Economics and Mathematical Systems No. 157 (Berlin, 1978) pp. 37–44.

  8. B. Brosowski and F. Deutsch, “Some new continuity concepts for metric projections”,Bulletin of the American Mathematical Society 78 (1972) 974–978.

    MATH  MathSciNet  Google Scholar 

  9. G.B. Dantzig, J. Folkman and N. Shapiro, “On the continuity of the minimum set of continuous function”,Journal of Mathematical Analysis and Applications 17 (1967) 519–548.

    Article  MATH  MathSciNet  Google Scholar 

  10. I.I. Eremin and N.N. Astafiev,Introduction to the theory of linear and convex programming (Nauka, Moscow, 1976). (In Russian.)

    MATH  Google Scholar 

  11. J.P. Evans and F.J. Gould, “Stability in nonlinear programming”,Operations Research 18 (1970) 107–118.

    MATH  MathSciNet  Google Scholar 

  12. A. Fahmideh-Vojdani, “Analysis and continuous simulation of secure-economic operation of power systems”, Ph.D. Thesis, Department of Electrical Engineering, McGill University (Montreal, Canada, 1982).

    Google Scholar 

  13. A. Fahmideh-Vojdani and F.D. Galiana, “The continuation method and its application in power system planning and operation”, presented at CIGRE Symposium on Control Applications for Power System Security, Florence, Italy, September 1983.

  14. F.D. Galiana, A. Fahmideh-Vojdani, M. Huneault and m. Juman, “Optimal power systems dispatch through the continuation method: Variation of functional inequality limits”, invited paper at the International Symposium on Circuits and Systems, Houston, Texas, June 1983.

  15. C.B. Garcia and F.J. Gould, “Scalar labelings for homotopy paths”,Mathematical Programming 17 (1979) 184–197

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Guignard, Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space,SIAM Journal on Control 7 (1969) 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  17. F.S. Hillier and G.J. Lieberman,Introduction to Operations Research (3rd edition), (Holden-Day, Inc., San Francisco, 1980).

    Google Scholar 

  18. D.S. Jacobson, “Stability of bi-convex models in optimization”, M.Sc. thesis, McGill University (Montreal, Canada, 1983).

    Google Scholar 

  19. W. Krabs, “Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen”,Operations Research Verfahren XXV 1 (1977) 93–113.

    Google Scholar 

  20. A. Leger, Stability of a mathematical model for admissions planning at university, M.Sc. Thesis, McGill University (Montreal, Canada, 1983).

    Google Scholar 

  21. J. Lisy, “Methods of finding redundant constraints in linear programming”,Ekonomicko-Matematicky obzor (1971) 285–298. (in Czech.)

  22. D.H. Martin, “On the continuity of the maximum in parametric linear programming”,Journal of Optimization Theory and Applications 17 (1975) 205–210.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Morgan, “The continuation method”,Spectrum, The Institute of Electrical and Electronics Engineers, Inc. (June 1982).

  24. M.Z. Nashed, “Perturbation analysis of ill-posed problems”, presented at the Third Symposium on Mathematical Programming with Data Perturbations, The George Washington University, Washington, DC, May 21–22, 1981.

  25. F. Nožička, J. Guddat, H. Hollatz and B. Bank,Theorie der linearen parametrische Optimierung (Akademie-Verlag, Berlin, 1974).

    Google Scholar 

  26. Pretoria News, July 8, 1983.

  27. S. Robinson, “A characterization of stability in linear programming”,Operations Research 25 (1977) 435–447.

    MATH  MathSciNet  Google Scholar 

  28. B. Stott, “Review of load flow calculation methods”,IEEE Proceedings 62 No. 7 (1974) 916–929.

    Article  Google Scholar 

  29. B. Stott and J.L. Marinho, “Linear programming for power system network security applications”,IEEE Transactions, Power Apparatus and Systems PAS 98 (1979) 837–848.

    Article  Google Scholar 

  30. J. Telgen, “Identifying redundant constraints and implicit equalities in systems of linear constraints”,Management Science 29 (1983) 1209–1222.

    Article  MATH  MathSciNet  Google Scholar 

  31. L.I. Trudzik, “Optimization in abstract spaces”, Ph.D. Thesis, The University of Melbourne (Melbourne, Australia, 1983).

    Google Scholar 

  32. S. Zlobec, R. Gardner and A. Ben-Israel, “Regions of stability for arbitrarily perturbed convex program”, in: A. Fiacco, ed., Mathematical programming with data perturbations (M. Dekker, New York 1982) pp 69–89.

    Google Scholar 

  33. S. Zlobec, “Characterizing an optimal input in perturbed convex programming”,Mathematical Programming 25 (1983) 109–121.

    MATH  MathSciNet  Google Scholar 

  34. S. Zlobec, “Stable planning by linear and convex models”,Mathematische Operationsforschung und Statistik, Series Optimization 14 (1983) 519–535.

    MATH  MathSciNet  Google Scholar 

  35. S. Zlobec, “Feasible direction methods in the absence of Slater’s condition”,Mathematische Operationsforschung und Statistik, Series Optimization 9 (1978) 185–196.

    MATH  MathSciNet  Google Scholar 

  36. S. Zlobec, “Regions of stability for ill-posed convex programs”,Aplikace Matematiky 27 (1982) 176–191.

    MATH  MathSciNet  Google Scholar 

  37. S. Zlobec, “Input optimization: II. Numerical methods”. (In preparation.)

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada, and in part by the Gouvernement du Québec, programme de formation de chercheurs et d’action concertée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlobec, S. Input optimization: I. Optimal realizations of mathematical models. Mathematical Programming 31, 245–268 (1985). https://doi.org/10.1007/BF02591948

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591948

AMS 1980 subject classifications

Navigation