Skip to main content
Log in

Directional derivatives for the value-function in semi-infinite programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

For the problemP(λ): Maximizec T z subject tozZ(λ), whereZ(λ) is defined by an in general infinite set of linear inequalities, it is shown that the value-function has directional derivatives at every point\(\bar \lambda \) such thatP(\(\bar \lambda \)) and its dual are both superconsistent. To compute these directional derivatives a min-max-formula, well-known in convex programming, is derived. In addition, it is shown that derivatives can be obtained more easily by a limit-process using only convergent selections of solutions ofP n ), λ n \(\bar \lambda \) and their duals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bank et al.,Non-Linear Parametric Optimization (Birkhäuser, Basel-Boston-Stuttgart 1983).

    MATH  Google Scholar 

  2. A.V. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York etc., 1983).

    MATH  Google Scholar 

  3. K. Glashoff and S.Å. Gustafson,Einführung in die Lińeare Optimierung (Wissenschaftliche Buchgesellschaft, Darmstadt, 1978).

    MATH  Google Scholar 

  4. E.G. Gol'shtein,Theory of Convex Programming, Translations of Mathematical Monographs 36 (American Mathematical Society, Providence, RI, 1972).

    Google Scholar 

  5. R. Hettich and P. Zencke,Numerische Methoden der Approximation und Semi-Infiniten Optimierung (Teubner Studienbücher Mathematik, Stuttgart, 1982).

    MATH  Google Scholar 

  6. R. Hettich and P. Zencke, “Two case-studies in parametric semi-infinite programming,” in: Bagchi and H. Th. Jongen, eds.,Systems and Optimization (Springer Lecture Notes in Control and Information 66, 1984) pp. 132–155.

  7. W.W. Hogan, “Point-to-set maps in mathematical programming,”SIAM Review 15 (1973) 591–603.

    Article  MATH  MathSciNet  Google Scholar 

  8. W.W. Hogan, “Directional derivatives for extremal-value functions with applications to the completely convex case,”Operations Research 21 (1973) 188–209.

    Article  MATH  MathSciNet  Google Scholar 

  9. P.J. Laurent,Approximation et Optimisation (Herman, Paris, 1972).

    MATH  Google Scholar 

  10. F. Lempio and H. Maurer, “Differential stability in infinite-dimensional nonlinear programming”,Applied Mathematics and Optimization 6 (1980) 139–152.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Lommatzsch, ed.,Anwendungen der Linearen Parametrischen Optimierung (Akademie-Verlag, Berlin 1979).

    MATH  Google Scholar 

  12. S.M. Robinson, “Stability theory for systems of inequalities, part II: Differentiable nonlinear systems”,SIAM Journal on Numerical Analysis 13 (1976) 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, 1972).

    Google Scholar 

  14. W.W. Rogosinski, “Non-negative linear functionals, moment problems and extremum problems in polynomial spaces”, in: G. Szegö, ed.,Studies in Mathematical Analysis and Related Topics (Stanford University Press, Stanford, CA, 1962) pp. 316–324.

    Google Scholar 

  15. W. Rudin,Functional Analysis (McGraw-Hill, New York, 1973).

    MATH  Google Scholar 

  16. H.H. Schäfer,Topological Vector Spaces (Springer, New York-Heidelberg-Berlin, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zencke, P., Hettich, R. Directional derivatives for the value-function in semi-infinite programming. Mathematical Programming 38, 323–340 (1987). https://doi.org/10.1007/BF02592018

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592018

Key words

Navigation