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Abstract 

In this paper we introduce a primal-dual affine scaling method. The method uses a search-di- 
rection obtained by minimizing the duality gap over a linearly transformed conic section. This 
direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993; 
Monteiro et al., 1990), nor does it fit in the generic primal-dual method (Kojima et al., 1989). The 
new method requires O(v~n L) main iterations. It is shown that the iterates follow the primal-dual 
central path in a neighbourhood larger than the conventional ./K 2 neighbourhood. The proximity to 
the primal-dual central path is measured by trigonometric functions. 
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1. Introduct ion 

The original interior point algorithm for linear programming introduced by Kar- 

markar [14] is called a project ive scaling algorithm [9], since at each iteration it maps 

the current iterate to the center of a simplex by means of  a projective scaling 

transformation. This transformation is nonlinear due to the existence of  a nonhomoge- 

neous constraint. Very promising numerical results were reported later by Adler  et al. [1] 

for a sinlplification of Karmarkar ' s  algorithm. This simplification dispenses with the 

nonlinear projective transformation, thus the mapping becomes merely an affine trans- 

formation. Hence it was referred to as the affine scaling algorithm. (To our best 

knowledge, the earliest reference using the term affine scaling is [9].) Surprisingly, it 

turned out that this algorithm was already proposed in 1967 by Dikin [3]. Unlike 
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Karmarkar's algorithm, the affine scaling algorithm has not been proved to be polyno- 
mial. In implementing the algorithm, it involves an important parameter: the step length. 
By taking a fixed partial step along the Dikin direction, the ordinary affine scaling 
algorithm is obtained. The convergence proof of that algorithm without any nondegener- 
acy condition is given by Tsuchiya [26]. Taking a step along the Dikin direction with a 
fixed fraction towards the boundary (maximal step-length), the algorithm obtained is 
called the large step affine scaling algorithm. The convergence of the large step affine 
scaling algorithm has been established by Tsuchiya and Muramutsu [27]. 

By Karmarkar's projective scaling transformation, the original linear objective func- 
tion becomes a fractional linear function. The search direction used in Karmarkar's 
method (in the transformed space) is obtained by optimizing only the numerator of the 
transformed fractional linear function (thus a simplification) over a sphere inscribed in 
the solution space. As a result, this search direction is in general not a descent direction 
for the original linear objective; it is descent only for the potential function [14]. In 
contrast to this strategy, Padberg [22] derived a search direction by optimizing the whole 
fiactional objective over the sphere. Similar algorithms were independently proposed 
and analysed by Goldfarb and Xiao [5] and Gonzaga [6]. In particular, Goldfarb and 
Xiao [5] gave a convergence proof for the algorithm under primal and dual nondegener- 
acy assumptions. Additionally. Goldfarb and Xiao [5] proposed a variant of the 
algorithm that is provably polynomial. 

The radial projection of a nonnegative vector ~v on the simplex {y I> 0 1 eTy = 1}, i.e., 
( 1 / e  r w) w, belongs to the sphere 

{ 1 } 
Yl II Y -  - e l l  ~< I / r  1) 

n 

if and only if w belongs to the inscribed circular cone 

In fact, one may obtain the search direction derived in Padberg [22] and Goldfarb and 
Xiao [5] by optimizing the original linear objective over a circular cone, using merely an 
affine transformation. In this sense, the direction may be called a cone affine scaling 
direction. Under this interpretation, Jan and Fang [11] rediscovered this direction, and 
provided computational results suggesting an improvement over Dikin's affine scaling in 
practice. 

Path following is another important class of interior point methods. The idea of 
following the central path, or the trajectory of centers, stems from Huard [10] and Fiacco 
and McCormick [4]. The polynomiality of a variant of Huard's method, the short step 
center method, was proved by Renegar [24] in 1988. Renegar's method is the first 
O(~/nL) iteration method for linear programming. This O(v/n-L) iteration bound was 
later obtained for other variants of interior point methods, including the potential 
reduction method [25,30], the primal-dual path-following method [20] and the predic- 
tor-corrector method [ 19]. 
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As recent intensive research indicates, the primal-dual interior point algorithms are 

theoretically and practically superior to the primal-only variants. Moreover, primal-dual 

methods can be easily understood as a scheme to solve the approximated K - K - T  

system using Newton's  method (cf. [8,15,16,19]). Monteiro et al. [21] introduced a 

primal-dual version of the affine scaling method. The interpretation of  this method is to 

apply Newton's  method to solve the K - K - T  system aiming directly at the optimal 

point. In [21] it is proved that the method has an iteration bound of O(nL 2) if very short 

steps are taken. The length of the steps can also be determined by incorporating a 

potential function, see [18,28]. Recently, Jansen et al. [12] introduced a different version 

of file primal-dual affine scaling method, in which the search direction is obtained by 

minimizing the duality gap under the feasibility restrictions with an additional sphere 

constraint (after scaling). Clearly, this direction-finding procedure resembles Dikin's 

affine scaling method for the primal-only case. Moreover, Jansen et al. [12] proved that 

the method requires at most O(nL) iterations, which is a considerable improvement over 
Monteiro et al. 's O(rtL 2) bound. 

In this paper, we introduce a new variant of  primal-dual affine scaling method. The 

main feature of our method is that we obtain our search direction by minimizing the 

duality gap under the feasibility restrictions and a certain conic constraint. Following our 

discussion on the cone affine scaling by Padberg [22], Goldfard and Xiao [5] and Jan and 
Fang [11], the new method may be called the primal-dual cone affine scaling - an 

analog in the primal-dual case. As we will show later, its iterates follow the central 
path, and this enables us to prove an O(v~-n L) iteration bound for the new method. 

Before discussing our method, we outline the notation and the organization of  this 
paper. 

We consider the standard linear programming problem 

( P )  m i n { c T x I A x = b ,  X > 0 } ,  

where A is an m • n matrix (n > 2), b and c are m- and n-dimensional vectors 

respectively, and x ~ R"~ is the decision variable, and the dual problem 

( D )  max{bTyl ATy + s = c, S > 0}, 

where y E ~ " ,  s E ~"  are the decision variables. 

In this paper we assume without loss of generality that the rank of A is m, and that 
there exist solutions x > 0 and y, s with s > 0 such that Ax = b and ATy + S = C. 

For a given vector denoted by w the corresponding upper case letter W denotes the 

diagonal matrix diag(w) defined by that vector w. We denote the Lp norm of w by 

JJ w IJ i, and the Euclidean norm (the L2-norm) simply by JJ w [[. We will use trigonomet- 
ric functions in defining the search direction. For two vectors f and w, define 

fT W 

cos(f, "3 := II f II II w II ' 

sin(f, w) 
t an ( f ,  w ) " -  cos(f, w) 

s in ( f ,  w ) : =  V/1 - c o s ( . / ' ,  w) 2 , 
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Subscripts i will denote the ith component of a vector, e.g., wi, except for the all-one 

vector e =  [1, 1 . . . . .  1] "r where e~ will denote the ith unity vector. We let I be the 

identity matrix l = [e l ,  e 2 . . . . .  e,,]. We will use superscript i to refer to quantities in the 

ith iteration of the algorithm, e.g., w'. 

The organization of this paper is as follows. In Section 2, we derive the p r ima l -dua l  

cone affine scaling direction. Based on this direction, a p r ima l -dua l  cone affine scaling 

algorithm is introduced in Section 3. We show in Section 4 that this algorithm 

guarantees a reduction in duality gap of  1 - l / O ( f n - )  per step. Clearly this implies an 

O(v~n L) iteration bound for the algorithm. In Section 5, we compare the p r ima l -dua l  

cone affine scaling direction with other p r imal -dua l  search directions, and we investi- 

gate how our neighbourhood of the p r imal -dua l  central path relates to a more com- 

monly used neighbourhood. 

2. The  p r i m a l - d u a l  cone affine scal ing 

2.1. The p r ima l -dua l  interior-point method 

The nonnegative primal variables x in (P) and the dual slacks s in (D), are restricted 

to orthogonal affine spaces, viz. 

x E A T ( A A T ) - I b + K e r ( A ) ,  s ~ c + R a n g e ( A T ) .  

Since the dimensions of  these two orthogonal affine spaces sum up to n, they have a 

unique intersection point. Following Kojima et al. [16], per iteration the solution space is 

transformed linearly such that the current iterate coincides with this unique intersection 

point of the transformed space. Let the current solution be x and s. The transformation 

is: 

Yc --* - - 2  i for i =  1 , 2 , . . . , n .  3,--* i si, for i =  1 , 2  . . . . .  n. 
S i 

Introducing the scaling vector d, 

d , : =  - -  , for i =  1 , 2  . . . . .  n. 

and the pr imal-dual  vector v, 

v i , = ~ ,  for i =  1 , 2  . . . . .  n, 

it follows that 

v = D - l x = D s .  

Displacements in the original space will be denoted by A x and As,  and in the 

transformed space by p ,  := D -  ~A x and p, := DA s, respectively. Moreover,  p := p ,  + p~. 
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The system 

D - I A x + D A s = p ,  A A x = 0 ,  ATAy+As=O 
describes the one-to-one correspondence between a search direction p in the v-space 
and a pair (Ax, As). This can be seen by the relations 

P, : =  PAD P and p., := p -- p~, 

where Pa D denotes the orthogonal projection matrix on Keff AD) given as 

PAD : =  I - -  J a  T ( A D  2aT  ) - 1 A D .  

Different primal-dual interior point algorithms use different p in defining search 
directions. (See Section 5 for a discussion on search directions.) 

2.2. An inscribed circular cone 

In the introduction, it was discussed that the sphere constraint n x - e / n [ [  <~ 
1 / ( n ( n -  1) used in Karmarkar's projective scaling algorithm corresponds to the 
circular cone constraint 

v / n - I  cos(e, x) >/ - -  , (1) 
n 

dispensing with projection. We will show that this condition is stronger than the 
inequality constraints x >~ O, but weaker than Dikin's sphere constraint 

II x -  e II < 1. (2) 

We first mention the following lemma. 

Lemma 2.1. Let w E ~n. Then, 

e T W e T W 

max w i - - - - -  ~< ~/n - 1 tan( e, w ) -  
I -.<< i ~< n n n 

Proof. 
We will prove the lemma by showing 

( e ) ( e )  T ( 1  ee T ) 
e i -  e i -  _-<(n- 1) I -  n2 (3) 

for arbitrary i ~ {1, 2 . . . . .  n}. 
The only nonzero eigenvalue of the rank-one matrix 

is ( n -  1) /n  with corresponding eigenvector ( e s - e / n ) .  The positive semi-definite 
matrix 

( (n- 1)~,~I- ~ 
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has also an e igenvalue  ( n -  l ) / n  cor responding  to the e igenvec tor  ( e ; - e / n ) .  This  

proves  (3). By pre-mul t ip ly ing  by w r and pos t -mul t ip ly ing  by w in (3), it fo l lows that 

max % -  - -  ~< 
1 ~< i ~ n n .~l \ /'l 

1 I e Tw I 

= ~/77Z-T cos- '(  e. w)  1 n 

e "r w 
= ~ / n -  t tan( e. w ) - - ,  

I I  

comple t ing  the proof.  [] 

L e m n m  2.2. Let  w E ~" .  If" cos(e ,  w) > ~/( n - l ) / n ,  then w > O. 

Proof. 
If cos(e ,  w) >7 f ( n  -- 1 ) / n ,  then eVw > 0, s in(e,  w) ~ VV(-/n and tan(e,  w) 

<~ ~ /1 / (n  - 1 ) .  Using L e m m a  2.1, we obtain 

m a x  w i - -  - - - -  ~ - -  
1 <~ i ~ n tl 11 

and so consequent ly  w >  0. D 

Actua l ly  we can further show that ( l ) impl ies  ei ther  x > 0 or x = e r x ( e  - e , ) / ( n  - 1 ) 

for some i ~ {1, 2 . . . . .  n}. 

Wha t  remains  to be shown is that the cone constraint  (1) is weaker  than the sphere 

constraint  (2). C l e ~ l y ,  if [[ x - e II ~ 1, then 

II x II 2 _ 2 e vx + n ~ 1, 

which implies  

eVx 11 xll + ( n -  1)/11 xll 
cos( e, x) - v~ II ~/I ~ 2N,, 

After  not ing that the m i n i m u m  of  the above  r ight-hand side is ob ta ined  when 11 x II 

= ~ / n -  1 ,  it fol lows that the sphere constraint  is at least  as strong as the cone 

constraint .  Certainly,  x = 10 e satisfies the cone constraint  but not  the sphere constraint .  

This proves  that the cone constraint  is indeed wee&er than the sphere constraint .  

2.3. Derivat ion of" the new direction 

Simi la r  to the way the affine scal ing search direct ion is der ived,  we nov<' require that 

v + p ,  > 0 and u + p ,  > 0. Notice  that the largest  inscr ibed c i rcular  cone in p r i m a l - d u a l  

scaled space is descr ibed by 
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According to Lemma 2.2, satisfaction of the above condition is sufficient for the 
nonnegativity of v + Px and v + p.,. 

Since eT(v +p., + V +p,~) = eW(2v + p )  and 

v + p , ] l  j = I l v + p , . l l 2 +  I I v + p ,  II e 

= 11( ,r - P~D)t,  + P.,D( v + p)II  ~- + II P~DV + ( I -- PAD)( v + p)I I  = 

= I I v l I = +  [ I v + p l l  2, 

it follows that 

v +p,.] v 

Further notice that 

( x +  ~ x ) r ( s  +ZXS)= II VII 2 + vrp, 

which shows that taking a full step along that direction will result in a reduction in 
duality gap of vXp. 

The preceding discussion motivates to define the new primal-dual cone affine scaling 
direction p as the solution of the following program, 

( ~ )  minimize vTp 

subject to cos([ ; ] ,  Iv ~_p]) >/ V/2 

where p is the decision variable. 

tZ - -  I 

2 n 

Notice that if the angle between v and e is large, (P--D) will not have any feasible 
solution at all. In this respect, it is useful to recall the concept of the primal-dual 
central path. 

Definition 2.1. (Primal-dual central path). A pair (x, s) lies on the primal-dual 
central path if and only if v = (eTv/n)e. 

We introduce 

6 := V~-n- 1 tan( e,  v )  

as a measure of proximity to the primal-dual central path, cf. Lemma 2.1. Based on this 
measure, a new neighbourhood of the central path is defined as 

, / e ( / 3 ) : = { v ~ " +  16~/3} 

for some /3 ~ (0, 1). In Section 5, it will be shown that the standard neighbourhood 
J'2(/3) as used in, e.g., [19] is tighter than .,t"(/3). 

The next theorem shows that the problem (PD) has an analytical solution. 



184 J.F, Sturm. S. Zhang / Mathematical Programming 72 (1996) 177-194 

If v ~ .IV( ~ ) for some 13 ~ (0, I) and v 4= O, then (P--D) has an optimal 

A ( y / + l  
= ( 2 n - 1 ) - - - e  r 2v 

rl rl 

(n - -  1 ) A -  ( ' q -  I)eTv 

7/ 

which implies that 

e T o 

A= ( r l -  1) - 
n - 1  

- - v +  T e  

(8) 

Theorem 2.1. 
solution p given by 

~+1  sr eTv 
p - -  - - v +  - -  - - e ,  

,-5 ,~ n -  1 

where ~ =  ~ /2n / (1  - ~2)  _ ] 

Proof. 
Rewrite (P---D) as 

min vVp[ v + p  --er(  2v+p)<~O " 
P 

for which the Lagrangian is 

2~,(p) =uTp+ A( 2n~2n~T-lr 2+ v+pl] 2 - e S ( 2 v + p ) ) .  

The gradient is 

V ~ ( p ) = v + n ( v + p ) - a e .  

where we let 

A~2n -- 1 

r l : =  ~/ll vii2 + I I o + p l [  2 

The Karush-Kuhn-Tucker optimality conditions are 

V ~ ( p )  = 0, (4) 

A ( ~ ~ [ ]  v][ 2 + Ilv +pH 2 - er(2v + p)) = 0 ,  (5) 

A>_-O and 2nv;-~-l~/l/vll2+ IIv+pl]  2 - -eT(gv+p)<~O.  (6) 

If A = 0, then (4) implies v = 0 which contradicts the assumptions of the theorem. 
Therefore, A > 0 and (4) yields 

- q + l  A 
p - - v +  --e. (7) 

Since A > 0, using (5) and (7) and the definition of r b we obtain 

o = ~ / 1 1  v II 2 + II v + p II 2 - eT(2 v + p )  
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What remains is to solve for "q. By definition of r I we have 

A2(2n - l) = r  I I v + p l l 2 ) = r  I I v - A e l l  2, 

where we used (7). Rewriting yields 

O= rl2ll vii2 + I lv l l2-2AeTv+nA2-(2n - I)A 2 

= (r7 z + 1)II v II z - A(2eTv + (n  -- 1)A) 

= (n  2 + 1)11 vii 2 -  A ( ~ +  I)eTv, 

where we used (8) in the last equality. Applying (8) once more we obtain 

(eTv) 2 
('r/2 + 1)II v I1: = ( r  - 1 ) - -  

n -  1 

Because ~ is nonnegative, we obtain from (9) that 

r ( n -  1)II vii 2 + (e  v) 2(eVv)" 

" q =  (eTv)2 ( n _  1)l]vll2 = ( e T v ) 2 ( n _ l ) l l v l l a  - 1 .  

Using 

I nllvll  2 
tanZ(e, v ) =  cosZ (e ,  v) - 1=---(eTv)2 1, 

it follows from (10) that 

r "r/= l - ( n - 1 )  tan2(e, v) - 1  = 1Z-)~2 

Together with (7) and (8) this completes the proof. [] 

1 = ~ .  

(9) 

(10) 

The search directions Ax and As in the original primal and dual spaces are as 
follows: 

and 

Ax := Dp,. = D e A D  p -- 
~+ 1 ~ -  1 e T v  
- - D P A o V +  - - D P a o e  (11) 

~ n - 1  

s~+l 
As:=D-I(p-p. , . )  = 

~-- 1 eTv 
D-'(I--PAD)V - - D - ' ( 1 - - P A D ) e .  ~ n - 1  

(12) 

For notational reason we introduce a new vector: 

Ilvll 2 
"-- e - - v .  

q e T O 

Clearly, q is orthogonal to v and therefore, 

6 =  ~ -  1 tan(e,  v) = ~ [[ q II 
II v I1" 
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In addition, we obtain the relation 

II v II 2 a 2 
eT" erq = II q II 2 = - - I 1 , ,  _ 1 " II 2. 

Because o f  (9) and ~ = ~: we have 

( e : . )  2 
(~:2 § 1)ll .[I 2 =  ( ~ 2 _  1 ) - -  

n -  1 

Hence, letting r := (2 2 + 1) / (2~) .  

~ + 1  ~ - 1  e r r  
p -  - - v +  - -  - - e  

~'-t- 1 2 ~2- -1  (eTv) 2 I lvl l  2 
- - - v +  - -  - - e  

c ~ + 1  2~ ( n - 1 ) H v l l  2 e r r  

~d- 1 2r  
- _ _ . + _ _ ( q + . ) .  

In order to simplify this expression, we rewrite 

~:§ 

to obtain 

2r  ( ~ +  1 ) 2 -  (~:2 + 1) 2 

~:+1 .~( ~: + 1) ~ : + 1 '  

2 
P =  ~ +  1 ( - "  + " q )  

By the orthogonality of v and q, this shows immediately that 

(13) 

and 

2 
II pll = - - r  § r2a ' - / (n  - 1)II vii. (14) 

~ + 1  

2 
vT p -- - -  It v ll 2 

r  ' 

so that for any t, ( 2,) 
+ w T p  = 1 - - ~ + ~  [[vii 2 (15) (v  + tpx)w(v + tP,) : II vii 2 

3.  T h e  a l g o r i t h m  

Now we are ready to present the cone affine scaling algorithm. The iterative solutions 
in the algorithm are generated by steps along the primal-dual cone affine scaling 
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direction p obtained in the previous section. In order for p to be well defined, the step 
length is to be controlled such that all iterates are contained in X ( / 3 )  for some fixed 

/ 3 e  (0, 1). Without loss of generality initial primal and dual solutions in J r ( / 3 )  are 
assumed to be known. 

Algorithm 1. (A, b, c, x ~ s ~ 

Input: Initial feasible solution ( x ~ s ~ such that v ~ = ( X ~  ~ i/2 e ~ A,'( ~ ) .  

Output:  Feasible solution ( x  i, s i) such that (x~)Ts~ < 2 -2L 

and 
Step 0 (Initialization). Set i = 0. 
Step ] (Check stopping criterion). If ( x i ) X s  i < 2 -2z,  then stop 

Step 2 (Compute search directions). Compute A x  ~ and As ~ according to Eqs. (11) 
and (12). 

Step 3 (Compute step length). Compute the largest t such that 

(x' +-tAS')'/2e for all 0 } 4  t. 

Step 4 (Take steps). Set x i+1 : = x i +  t A X  i and s i+ l := s i + t A s  i. 

Step 5 (Set i : :  i + 1 and return to Step 1). 

It is well known that when the duality gap is at most 2 -2L, the corresponding primal 
and dual solutions can be purified to optimal solutions of  (P) and (D) in O(n 3) 
operations [23]. 

4. Convergence analysis 

In this section we will derive the O(v~L)  iteration bound for Algorithm 1. To this 
end, we will first derive a lower bound on the step length. 

4.1. A lower  bound on the step length 

Denoting the current and next iterate by v and v + respectively, we have for any 
i E {1, 2 . . . . .  n} and feasible step length t that 

v + = r  

-4Pi t2" = ( v i + t p j 2  ) 1 + ( P , ) i ( P . , ) i -  ' 2 

( vi + t P i / 2 )  2 

1 where the nonnegativity of  v + v tp follows from v + tp., >>. 0 and v + tp~. >7 O. 

Remark here that for any p/> - 1, 

1,/1 + p - 1  P l+r > -tpl, 
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so that 

[(P.,-) i( P~.)i-  �88 l /.2 v + >Iv i + ~ t p i -  . (16) 
~, + "tp; 

In order to estimate cos(e, v+), we will derive a lower bound on eTv +. Using 
p = 2 ( - v  + r q ) / ( ~ +  1), we obtain 

( , )  r, 
e T ( o + g p ) =  1 ~+1 eTv+~+le :q"  

Together with (13) this implies 

1 + - -  - - / . .  
eTv i~+ 1 r 1 n -  1 

Again using p--  2 ( - v  + rq) / ( /~+ 1), we rewrite 

( , )  r, 
- - -  v + - - q  v + g t p =  1 _~+1 ~:+1 

( ( r + l ) / . )  rt l 

= 1 ~71 ~ + ~ + l c o s 2 ( e , ~ )  

Remark here that 

r + l  
1 - - - t > 0 f o r 0 ~ / . ~ <  1. 

~+1  

(17) 

e T U 
- -  e. ( 1 8 )  

by definition of r and ~, there holds r =  (~2 + 1)/2~:< ~: so that 

From Lemma 2.1 we have 

e T u 

v > _ - ( l - a )  e,  
n 

which implies for 0 ~ t ~< 1 that 

1 ~ + 1  v~> 1 - -  

Combination with (18) yields 

I _ _  _ _  

v+gtp>~ 1 ~:+1 

for 0~< t~< 1. 

t ~ e T • rl e T 0 

~:+l)(1-a)--e-n --(1~+1 - a )  n e. 

eT o ~ eT u 
e >  - ( I - 3 )  e (19) 1 - 6 )  n ~ n 

From the Cauchy-Schwartz inequality, it follows that 

~ I(p,.), .(P,);I < [I p.,llll p, ll = IIp, ll ~/11 pll 2 -  II p.~.ll 2 
i=1 

where, from (14), 

1 - I ' - r 2 r ~ 2 / ( n - -  l )  
[ [p[ [2=4 [[vii 2 

( ~ + 1 )  2 

I 9 
~ II p II- ( 20 )  

(21) 
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Summarizing (16), (17), (19)-(21), we have 

eT(~, +) r r a ~ 
- - > 1 - - - +  - -  

eTV ~ + 1  ~ + 1  n -  1 

~ + 1  1 + r 2 6 2 / ( n -  1) nil vii 2 
3 - - t  2. 

( l - a ) ~  ( ~ +  i): (eTv) 2 

Using (15), we estimate 

( ' )  IIv + II = r  Ilvll ~ 1 -  ~-t--~-i- Ilvll, 

from which we obtain 

cos(e,  v +) > c o s ( e ,  v ) +  - -  
r 6 2 eTv 

,~+ 1 n - 1" ~11 v + ~ l  t 

(22) 

n - -1  +r262 ( 62 ) eTv t2" 

- 3  ( l _ 6 ~ [ n - - - l ~ - ( s ~ + l )  l + - - n _ l  f~-nllv+ll (23) 

Now we are in a position to prove the following result. 

Lemma 4.1. After the f i rs t  main iteration o f  Algorithm 1, the step length is at least 

t > o.1/3~(1 - / 3 ) .  

Proof. Notice that after the initial iteration, there always holds 6 =/3. Consider the case 

that 

0 ~  t <0.1/32(1 - / 3 ) .  

We know that 

2n 
~ 2 + 1 -  

1 - 6 2 '  

SO, s c 2 > 3, as n > 2. Combining this with the definition of r, we obtain 

n -  1 + r2/3 2 n- -  1 

~ + 1 ~ ~2 +----7 

By definition of r, 

~ 2 + 1  
- -  - 2 ,  

rs ~ 

and using n > 2, 

1 + - -  ~ 2 ,  
n - I  

r 2 n - I  ~ 2 + 1  1 4 5 

+ ~:2+--~ " < ( l - 6 2 )  2 - -2  - +  4 r  + 12 - 6 
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so that we can further estimate (23) as follows: 

r /3 2 eTu 

c~ v+)">c~  v) + ~+1  n - 1  gTn IIv+ II t 

2rt 5 ( 

- 3 ( 1 _ / 3 ) ( s c +  1 ) ( n _  1) ~ 1 - t - - -  

>~ cos( e, v) 

r /3 ~ eWv { 
+ ~ + 1  n - 1  v,~-n ii v+ ii t[1 

> cos( e, ~). 

~2 ) eTo 
n - 1  fn-H v+ ]1 t 

10, ) 
/3'-(T-/3) 

Therefore, we conclude that the length of the step towards the boundary of JV(/3) is 
at least O.1/3-'(1 - /3) .  [] 

4.2. The convergence result 

Combining Lemma 4.1 with (15), it follows that only O(v57n L) main iterations are 
needed by Algorithm 1 to solve (P) and (D) simultaneously. This result is included in 
the following theorem. 

i X 0 Theorem 4.1. Choose a parameter/3 independent q/: n and L, e.g., /3 = 7. Suppose 
and s o are feasible interior solutions to (P) and (D) respectively with 1og((x~ ~ = 
O(L) and 6(0) 4/3. Then, Algorithm 1 yields a pair of primal and dual feasible 
solutions (x, s) with xTs < 2 -2L in at most O(v/Tdn L) main iterations. 

Proof. By definition of the step length in Algorithm 1, we have 6 <i) ~</3 for all i, so 
that 

~'= 1 - ( ~ ' ) ' ~  ~ = o ( ~ ) .  

By Lemma 4,1 we know that for any i>~ 1 there holds t~> 0.1 /32(1 - / 3 ) .  From 
(15), we thus have for i ~> 1, 

(.ri+')Ws ' + ' =  1 ~ (0+  1 (x i )Ts /=  1 O(~-'n) (x i  si" 

The theorem follows immediately from the above inequality. [] 

5. Comparisons 

It was observed by Yamashita [29], Gonzaga [7] and Den Hertog and Roos [2] that 
many search directions used in primal interior point methods can be expressed somehow 
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as a linear combination of two directions given by - X P A x  Xc and XPAN e, where PAX 
denotes the orthogonal projection matrix on Ker(AX). These two directions are called 
the primal affine scaling direction and the primal centering direction respectively. 
Similarly, dual interior point methods use linear combinations of the vectors - S ( I -  

Pas..,)Sb and S(I-PAS ,)e, which are known as the dual affine scaling direction and 
the dual centering direction respectively. The more recent primal-dual methods, how- 
ever, appear to be more versatile in their choice of the search direction. First, the 
primal-dual path following method uses a linear combination of 

(DPADV, D- ' (  I-- PAD)V ) 

and 

(DPADV-' e, D- ' (  I-- PAD)V-' e ) 

for the primal-dual search direction (A x, As). 
The primal-dual affine scaling direction of Monteiro et al. [21] is simply 

( Ax, As) --- ( DPADV,D-'( I -  PAD)V), 

whereas Jansen et al. [12] proposed 

(Ax,  A s ) =  (DPADV2v, D - ' ( I - P A D ) V 2 v )  (24) 

as their Dikin-type search direction. 
Finally, the primal-dual cone affine scaling direction introduced in this paper is a 

linear combination of 

(DPADU, D-'(I--PAD)V) and (DPADe , D - ' ( I - P A D ) e ) ,  

i.e., it is a combination of the primal-dual affine scaling direction of Monteiro et al. [21] 
and a new centering direction. Hence it is different from both the primal-dual 
path-following direction and the primal-dual Dikin-type affine scaling direction (24). 
On the primal-dual central path, however, v is a multiple of e so that all primal-dual 
directions coincide with the direction ( X P  A x e, S(I - Pa x)e). 

Another interesting issue in polynomial interior point methods is the neighbourhood 
of the central path used in obtaining a step length. Many O(v~--L) iteration methods use 
the .#'2(/3) neighbourhood where / x s} 

�9 /u '2(/3):= ( x , s )  l l l x s -~e l l~ /31X,  l~= n ' 

see, e o [19] and [8]. 
As e _1_ Xs - Ixe, we have 

II Xs - Ixe 11//x = fn-tan( e, Xs), 

so that the ,412(/3) neighbourhood can be written in terms of the primal-dual vector v 
a s  

~f'2(/3) = {vl 7~n tan(e, V2e) <~/3}. 

We will use the following lemma to show that ./'/'2((1 + 1 / ( n -  1)/3) c..4/(/3). 
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L e m m a  5.1. Let x ~ ~'~. Assume that x is positive and non-multiple o f  e. Then, 

I[ x Ill 11 x 1142 > II x [13 
Proof.  It is well known that the function 

f ( t )  := log x 
\ i = 1  

is a strictly convex function in t because 

f ( � 8 9  i + t2} ) < � 89  + f ( t 2 )  } 

for any t I 4= t 2 due to the Cauchy-Sohwartz inequality. Therefore, 

~.f(1) + 7f(4)  > / ( 2 ) .  

Taking the natural exponential we obtain 

( ~ )213( L ~)1/3  

X i X ) '  X~, 
i=1 \ i = 1  i=I  

completing the proof. [] 

From the above lemma, it follows for v ~ N+ and v non-multiple of  e that 

cos(~, v ) >  cos(~, v ~ ) ,  

and therefore 

~%(/3) c./r~ 1 + - - / 3  c ~ ' ( / 3 )  
# Z - -  l 

for all fl ~ (0, 1). 
Notice that the above containing relations are all strict. This shows that the new 

neighbourhood is indeed wider than the standard J ' 2  neighbourhood. The iterates of  

Algorithm 1, which are always on the boundary of /S/(/3), are therefore outside the 

standard -///'2(fl) neighbourhood. 
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