Skip to main content
Log in

On the Lipschitzian properties of polyhedral multifunctions

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we show that for a polyhedral multifunctionF:R n →R m with convex range, the inverse functionF −1 is locally lower Lipschitzian at every point of the range ofF (equivalently Lipschitzian on the range ofF) if and only if the functionF is open. As a consequence, we show that for a piecewise affine functionf:R n →R n,f is surjective andf −1 is Lipschitzian if and only iff is coherently oriented. An application, via Robinson's normal map formulation, leads to the following result in the context of affine variational inequalities: the solution mapping (as a function of the data vector) is nonempty-valued and Lipschitzian on the entire space if and only if the solution mapping is single-valued. This extends a recent result of Murthy, Parthasarathy and Sabatini, proved in the setting of linear complementarity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Aubin and H. Frankowska,Set-valued Analysis (Birkhäuser, Boston, MA, 1990).

    MATH  Google Scholar 

  2. R.W. Cottle, J.-S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992).

    MATH  Google Scholar 

  3. A. Dontchev and R.T. Rockafellar, “Characterizations of strong regularity for variational inequalities over polyhedral convex sets,” Research Report, Mathematical Reviews, Ann Arbor, MI 48 107 1995.

    Google Scholar 

  4. B.C. Eaves and U.G. Rothblum, “Relationships of properties of piecewise affine maps overs ordered fields,”Linear Algebra and its Applications 132 (1990) 1–63.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Fujisawa and E.S. Kuh, “Piecewise linear theory of nonlinear networks,”SIAM Journal on Applied Mathematics 22 (1972) 307–328.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.S. Gowda, “On the continuity of the solution map in linear complementarity problems,”SIAM Journal on Optimization 2 (1992) 619–634.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.S. Gowda, “An analysis of zero set and global error bound properties of a piecewise affine function via its recession function,”SIAM Journal on Matrix Analysis and Applications 17 (1996) 594–609.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.S. Gowda and R. Sznajder, “On the pseudo-Lipschitzian behavior of the inverse of a piecewise affine function,”Proceedings of International Conference on Complementarity Problems (Baltimore, November 1–4, 1995), to appear.

  9. W. Hurewicz and H. Wallman,Dimension Theory (Princeton University Press, Princeton, NJ, 1948).

    MATH  Google Scholar 

  10. D. Kuhn and R. Löwen, “Piecewise affine bijections ofR n and the equationSx + −Tx =y,”Linear Algebra and its Applications 96 (1987) 109–129.

    Article  MATH  MathSciNet  Google Scholar 

  11. X.-D. Luo and P. Tseng, “Conditions for a projection-type error bound for the linear complementarity problem to be global,”Mathematical Programming, to appear.

  12. Z.-Q. Luo and P. Tseng, “On the global error bound for a class of monotone affine variational inequality problems,”Operations Research Letters 11 (1992) 159–165.

    Article  MATH  MathSciNet  Google Scholar 

  13. O.L. Mangasarian and T.-H. Shiau, “Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems,”SIAM Journal on Control and Optimization 25 (1987) 583–595.

    Article  MATH  MathSciNet  Google Scholar 

  14. G.S.R. Murthy, T. Parthasarathy, and M. Sabatini, “LipschitzianQ-matrices areP-matrices,”Mathematical Programming 74 (1996) 55–58.

    MathSciNet  Google Scholar 

  15. D. Ralph, “A new proof of Robinson's homeomorphism theorem for pl-normal maps,”Linear Algebra and its Applications 178 (1993) 249–260.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.M. Robinson, “Some continuity properties of polyhedral multifunctions,”Mathematical Programming Study 14 (1981) 206–214.

    MATH  Google Scholar 

  17. S. Robinson, “Normal maps induced by linear transformations,”Mathematics of Operations Research 17 (1992) 691–714.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  19. S. Scholtes, “Introduction to piecewise differentiable equations,” Preprint 53/1994, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, 7500 Karlsruhe, Germany, 1994.

    Google Scholar 

  20. S. Scholtes, “Homeomorphism conditions for coherently oriented piecewise affine mappings,” Research Report, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, 7500 Karlsruhe, Germany, 1994.

    Google Scholar 

  21. S. Scholtes, “A proof of the branching number bound for normal manifolds,”Linear Algebra and its Applications, to appear.

  22. R. Stone, Private communication, October 1994.

  23. D.W. Walkup and R.J.-B. Wets, “A Lipschitzian characterization of convex polyhedra,”Proceedings of the American Mathematical Society 23 (1969) 167–173.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Seetharama Gowda.

Additional information

Research supported by the National Science Foundation Grant CCR-9307685.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seetharama Gowda, M., Sznajder, R. On the Lipschitzian properties of polyhedral multifunctions. Mathematical Programming 74, 267–278 (1996). https://doi.org/10.1007/BF02592199

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592199

Keywords

Navigation