Skip to main content
Log in

Generalized equations and the generalized Newton method

  • Published:
Mathematical Programming Submit manuscript

Abstract

We give some convergence results on the generalized Newton method (referred to by some authors as Newton's method) and the chord method when applied to generalized equations. The main results of the paper extend the classical Kantorovich results on Newton's method to (nonsmooth) generalized equations. Our results also extend earlier results on nonsmooth equations due to Eaves, Robinson, Josephy, Pang and Chan.

We also propose inner-iterative schemes for the computation of the generalized Newton iterates. These schemes generalize popular iterative methods (Richardson's method, Jacobi's method and the Gauss-Seidel method) for the solution of linear equations and linear complementarity problems and are shown to be convergent under natural generalizations of classical convergence criteria.

Our results are applicable to equations involving single-valued functions and also to a class of generalized equations which includes variational inequalities, nonlinear complementarity problems and some nonsmooth convex minimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baiocchi, “Disequazioni variazionali”,Bolletino dell' Unione Matematica Italiana 18-A (1981) 173–187.

    MathSciNet  Google Scholar 

  2. C. Baiocchi and A. Capelo,Variational and Quasivariational Inequalities: Applications to Free Boundary Problems (Wiley, New York, 1984).

    MATH  Google Scholar 

  3. H. Brézis, “Problemes unilateraux,”Journal de Mathematique Pures et Appliqueés 5 (1972) 1–168.

    Google Scholar 

  4. H. Brézis,Opérateur Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert (North-Holland, Amsterdam, 1973).

    Google Scholar 

  5. F.E. Browder, “Nonlinear maximal monotone operators in Banach spaces”,Mathematische Annalen 176 (1968) 88–113.

    Google Scholar 

  6. M. Chipot,Variational Inequalities and Flow in Porous Media (Springer, New York, 1984).

    MATH  Google Scholar 

  7. G. Cohen, “Auxilliary problem principle and decomposition of optimization problems,”Journal of Optimization Theory and Applications 32 (1980) 277–305.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.W. Cottle, F. Gianessi and J.L. Lions,Variational Inequalities and Complementarity Problems: Theory and Applications (Wiley, New York, 1980).

    MATH  Google Scholar 

  9. C.W. Cryer, “The solution of a quadratic programming problem using systematic overrelaxation,”SIAM Journal on Control 9 (1971) 385–392.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.E. Dennis and R.B. Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    MATH  Google Scholar 

  11. G. Duvuat and J.L. Lions,Inequalities in Physics and Mechanics (Springer, Berlin, 1976).

    Google Scholar 

  12. B.C. Eaves, “A locally quadratic algorithm for computing stationary points,” Technical Report, Department of Operations Research, Stanford University (Stanford, CA, 1978).

    Google Scholar 

  13. P.T. Harker and J.S. Pang, “Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications.”Mathematical Programming 48 (1990) 161–220.

    Article  MATH  MathSciNet  Google Scholar 

  14. C.M. Ip and J. Kyparisis, “Local convergence of quasi-Newton methods for B-differentiable equations,”Mathematical Programming 56 (1992) 71–90.

    Article  MATH  MathSciNet  Google Scholar 

  15. N.H. Josephy, “Newton's method for generalized equations,” Technical Report No. 1965, Mathematics Research Center, University of Wisconsin (Madison, WI, 1979).

    Google Scholar 

  16. N.H. Josephy, “A Newton method for the PIES energy model,” Technical Report No. 1977, Mathematics Research Center, University of Wisconsin (Madison, WI, 1979).

    Google Scholar 

  17. L.V. Kantorovich and G.P. Akilov,Functional Analysis (Pergamon, New York, 1982).

    MATH  Google Scholar 

  18. S. Karamardian, “The complementarity problem,”Mathematical programming 2 (1972) 107–129.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Kojima and S. Shindo, “Extensions of Newton and quasi-Newton methods to systems of PC1 equations,”Journal of the Operations Research Society of Japan 29 (1986) 352–374.

    MATH  MathSciNet  Google Scholar 

  20. J.L. Lions and G. Stampacchia. “Variational inequalities,”Communications in Pure and Applied Mathematics 20 (1967) 493–519.

    MATH  MathSciNet  Google Scholar 

  21. O.L. Mangasarian, “Solution of symmetric linear complementarity problems by iterative methods,”Journal of Optimization Theory and applications 22 (1977) 465–485.

    Article  MATH  MathSciNet  Google Scholar 

  22. G.J. Minty, “On the monotonicity of the gradient of a convex function,”Pacific Journal of Mathematics 14 (1964) 243–247.

    MATH  MathSciNet  Google Scholar 

  23. G.J. Minty, “Monotone (nonlinear) operators in Hilbert space,”Duke Mathematics Journal 29 (1973) 341–346.

    Article  MathSciNet  Google Scholar 

  24. J.M. Ortega,Introduction to Parallel and Vector Solution of Linear Systems (Plenum, New York, 1988).

    MATH  Google Scholar 

  25. J.M. Ortega and W.C. Rheinboldt,Interative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    Google Scholar 

  26. A.M. Ostrowski,Solution of Equations in Euclidean and Banach Spaces (Academic Press, 1973).

  27. J.S. Pang, “Newton's method for B-differentiable equations,”Mathematics of Operations Research 15 (1990) 311–341.

    MATH  MathSciNet  Google Scholar 

  28. J.S. Pang and D. Chan, “Iterative methods for variational and complementarity problems,”Mathematical Programming 24 (1982) 284–313.

    Article  MATH  MathSciNet  Google Scholar 

  29. J.S. Pang and L. Qi, “Nonsmooth equations: motivations and algorithms,”SIAM Journal on Optimization 3 (1993) 443–465.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Qi, “Convergence analysis of some algorithms for solving non-smooth equations,”Mathematics of Operations Research 18 (1993) 227–244.

    MATH  MathSciNet  Google Scholar 

  31. S.M. Robinson, “Generalized equations and their solutions. part I: basic theory,”Mathematical Programming Study 10 (1979) 128–141.

    MATH  Google Scholar 

  32. S.M. Robinson, “Strongly regular generalized equations.”Mathematics of Operations Research 5 (1980) 43–62.

    Article  MATH  MathSciNet  Google Scholar 

  33. S.M. Robinson, “Generalized equations,” in: A. Bachem, M. Grëtschel and B. Korte, eds.,Mathematical Programming: the State of the Art (Springer, Berlin, 1982) pp. 346–367.

    Google Scholar 

  34. G. Stampacchia, “Formes bilineares coercitives sur les ensembles convexes,”Comptes Rendus del L'Academie des Science de Paris 258 (1964) 4413–4416.

    MATH  MathSciNet  Google Scholar 

  35. R.A. Tapia, “The Kantorovich Theorem for Newton's method,”American Mathematical Monthly 78 (1971) 389–392.

    Article  MATH  MathSciNet  Google Scholar 

  36. L.U. Uko, “The solution of finite dimensional variational inequalities using systematic relaxation,”Journal of the Nigerian Mathematical Society 8 (1989) 61–75.

    Google Scholar 

  37. L.U. Uko, “The generalized Newton's method,”Journal of the Nigerian Mathematical Society 10 (1991) 55–64.

    MathSciNet  Google Scholar 

  38. L.U. Uko, “On a class of general strongly nonlinear quasivariational inequalities,”Rivista di Matematica Pura ed Applicata 11 (1992) 47–55.

    MATH  MathSciNet  Google Scholar 

  39. L.U. Uko, “Remarks on the generalized Newton method,”Mathematical Programming 59 (1993) 405–412.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uko, L.U. Generalized equations and the generalized Newton method. Mathematical Programming 73, 251–268 (1996). https://doi.org/10.1007/BF02592214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592214

Keywords

Navigation