Skip to main content
Log in

A dual approach for the continuous collapsing knapsack problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

We formulate and solve a dual version of the Continuous Collapsing Knapsack Problem using a geometric approach. Optimality conditions are found and an algorithm is presented. Computational experience shows that this procedure is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Dyer, “An O(n) algorithm for the multiple choice knapsack problem,”Mathematical Programming 29 (1984) 57–63.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Fayard and G. Plateau, “On the collapsing 0–1 knapsack problem,” contributed paper Tenth International Symposium on Mathematical Programming, Montreal (August 1979).

  3. F. Glover and D. Klingman, “An O(n logn) algorithm for LP knapsacks with GUB constraints,”Mathematical Programming 17 (1979) 345–361.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.L. Graham, “An efficient algorithm for determining the convex hull of a finite planar set,”Information Processing Letters 1 (1972) 132–133.

    Article  MATH  Google Scholar 

  5. T. Ibaraki, T. Hasegawa, T. Teranaka and J. Iwase, “The multiple choice knapsack problem,”Journal of the Operations Research Society of Japan 21 (1978) 59–95.

    MathSciNet  MATH  Google Scholar 

  6. T. Ibaraki, “Approximate algorithms for the multiple choice continuous knapsak problem,”Journal of the Operations Research Society of Japan 23 (1980) 28–63.

    MathSciNet  MATH  Google Scholar 

  7. M.E. Posner, “The continuous collapsing knapsack problem,”Mathematical Programming 26 (1983) 76–86.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.E. Posner and M. Guignard, “The 0–1 collapsing knapsack problem,”Mathematical Programming 15 (1978) 155–161.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.E. Posner and M. Guignard, “The integer collapsing knapsack problem,” Working Paper 80/101, University of Wisconsin-Milwaukee, Milwaukee, WI (1980).

    MATH  Google Scholar 

  10. F.P. Preparata and S.J. Hong, “Convex hulls of finite sets of points in two and three dimensions,”Communications of the ACM 20 (1979) 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Schrage, “Implicit representation of generalized variable upper bounds in linear programming,”Mathematical Programming 14 (1978) 11–20.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Sinha and A. Zoltners, “The multiple choice knapsack problem,”Operations Research 27 (1979) 503–515.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Zemel, “The linear multiple choice knapsack problem,”Operations Research 28 (1980) 1412–1423.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Zemel, “An O(n) algorithm for the multiple choice knapsack problem and related problems,”Information Processing Letters 18 (1984) 123–128.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posner, M.E., Suzuki, H. A dual approach for the continuous collapsing knapsack problem. Mathematical Programming 39, 207–214 (1987). https://doi.org/10.1007/BF02592953

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592953

Key words

Navigation