Skip to main content
Log in

Multiflows and disjoint paths of minimum total cost

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we discuss a number of recent and earlier results in the field of combinatorial optimization that concerns problems on minimum cost multiflows (multicommodity flows) and edge-disjoint paths. More precisely, we deal with an undirected networkN consisting of a supply graphG, a commodity graphH and nonnegative integer-valued functions of capacities and costs of edges ofG, and consider the problems of minimizing the total cost among (i) all maximum multiflows, and (ii) all maximuminteger multiflows.

For problem (i), we discuss the denominators behavior in terms ofH. The main result is that ifH is complete (i.e. flows between any two terminals are allowed) then (i) has ahalf-integer optimal solution. Moreover, there are polynomial algorithms to find such a solution. For problem (ii), we give an explicit combinatorial minimax relation in case ofH complete. This generalizes a minimax relation, due to Mader and, independently, Lomonosov, for the maximum number of edge-disjoint paths whose ends belong to a prescribed subset of nodes of a graph. Also there exists a polynomial algorithm when the capacities are all-unit.

The minimax relation for (ii) withH complete allows to describe the dominant for the set of (T, d)-joins (extending the notion ofT-join) and the dominant for the set of maximum multi-joins of a graph. Also other relevant results are reviewed and open questions are raised. © 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin,Network Flows: Theory, Algorithms and Applications (Prentice Hall, New York, NY, 1993).

    Google Scholar 

  2. R.G. Bland and D.L. Jensen, On the computational behavior of a polynomial-time network flow algorithm,Mathematical Programming 54 (1992) 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Burlet and A.V. Karzanov, Minimum weight (T, d)-joins and multi-joins, Research Report RR 929-M- (IMAG ARTEMIS, Grenoble, 1993) 15 p.; to appear inDiscrete Mathematics (1997).

  4. B.V. Cherkassky, A solution of a problem on multicommodity flows in a network,Ekonomika i Matematicheskie Metody 13 (1) (1977) 143–151 (in Russian).

    MathSciNet  Google Scholar 

  5. W. Cunningham and J. Green-Krotki, Dominants and submissives of matching polyhedra,Mathematical Programming 36 (1986) 228–237.

    Article  MATH  MathSciNet  Google Scholar 

  6. E.A. Dinitz, A method for scaled canceling discrepancies and transportation problems, in: A.A. Fridman, ed.,Studies in Discrete Mathematics (Nauka, Moscow, 1973), in Russian.

    Google Scholar 

  7. J. Edmonds, The Chinese postman problem,Oper. Research 13 (Suppl. 1) (1965) 373.

    Google Scholar 

  8. J. Edmonds, Maximum matching and polyhedra with (0,1) vertices,J. Res. Nat. Bur. Standards Sect. B 69 (1965) 125–130.

    MATH  MathSciNet  Google Scholar 

  9. J. Edmonds and E.L. Johnson, Matchings, Euler tours and Chinese postman,Mathematical Programming 5 (1973) 88–124.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Even, A. Itai and A. Shamir, On the complexity of timetable and multicommodity flow problem,SIAM J. Computing 5 (1976) 691–703.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems,J. ASM 19 (1972) 248–264.

    MATH  Google Scholar 

  12. L.R. Ford and D.R. Fulkerson,Flows in Networks (Princeton University Press, Princeton, NJ, 1962).

    MATH  Google Scholar 

  13. A.V. Goldberg and A.V. Karzanov, Scaling methods for finding a maximum free multiflow of minimum cost,Mathematics of Operations Research 22 (1997) 90–109.

    MATH  MathSciNet  Google Scholar 

  14. A.V. Goldberg, E. Tardos and R.E. Tarjan, Network flow algorithms, in: B. Korte, L. Lovász, H.J. Prömel and A. Schrijver, eds.,Paths, Flows, and VLSI-Layout (Springer, Berlin, 1990) 101–164.

    Google Scholar 

  15. M. Grötshel, L. Lovász and A. Schrijver,Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1988).

    Google Scholar 

  16. M. Guan, Graphic programming using odd or even points,Chinese Mathematics 1 (1962) 273–277.

    Google Scholar 

  17. T.C. Hu, Multi-commodity network flows,J. ORSA 11 (1963) 344–360.

    MATH  Google Scholar 

  18. A.V. Karzanov, Fast algorithms for solving two known undirected multicommodity flow problems, in:Combinatorial Methods for Flow Problems (Institute for System Studies, Moscow, 1979, issue 3) 96–103 (in Russian).

    Google Scholar 

  19. A.V. Karzanov, A minimum cost maximum multiflow problem, in:Combinatorial Methods for Flow Problems (Institute for System Studies, Moscow, 1979, issue 3) 138–156 (in Russian).

    Google Scholar 

  20. A.V. Karzanov, Unbounded fractionality of maximum-value and minimum-cost maximum-value multiflow problems, in: A.A. Fridman, ed.,Problems of Discrete Optimization and Methods to Solve Them (Central Economical and Mathematical Inst., Moscow, 1987) 123–135 (in Russian); English translation:Amer. Math. Soc. Translations 2 158 (1994) 71–80.

    Google Scholar 

  21. A.V. Karzanov, Minimum cost multiflows in undirected networks,Mathematical Programming 66 (1994) 313–325.

    Article  MathSciNet  Google Scholar 

  22. A.V. Karzanov, Edge-disjoint T-paths of minimum total cost, Technical Report No. STAN -CS-92-1465 (Stanford University, Stanford, CA, 1993) 66 pp.

    Google Scholar 

  23. A.V. Karzanov, Openly disjoint T-paths of minimum total cost, in preparation.

  24. A.K. Kelmans and M.V. Lomonosov, On the maximum number of disjoint chains connecting given terminals in a graph, Abstract,San Francisco Annual Meeting of the AMS (1981) 7–11.

  25. L.G. Khachiyan, Polynomial algorithms in linear programming,Zhurnal Vychislitelnoj Matematiki i Matematicheskoi Fiziki 20 (1980) 53–72 (in Russian).

    MATH  Google Scholar 

  26. V.L. Kupershtokh, On a generalization of Ford-Fulkerson’s theorem to multi-terminal networks,Kibernetika 5 (1971) (in Russian).

  27. M.V. Lomonosov, On packing chains in a multigraph, Unpublished manuscript, 1977, 20 pp.

  28. L. Lovász, On some connectivity properties of Eulerian graphs,Acta Math. Acad. Sci. Hungar. 28 (1976) 129–138.

    Article  MATH  MathSciNet  Google Scholar 

  29. L. Lovász, Matroid matching and some applications,J. Combinatorial Theory Series B 28 (1980) 208–236.

    Article  MATH  Google Scholar 

  30. L. Lovász and M.D. Plummer,Matching Theory (Akadémiai Kiadó, Budapest, 1986).

    MATH  Google Scholar 

  31. W. Mader, Über die Maximalzahl kantendisjunkter A-Wege,Arch. Math. 30 (1978) 325–336.

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege,Arch. Math. 31 (1978) 387–402.

    Article  MathSciNet  Google Scholar 

  33. H. Röck, Scaling techniques for minimal cost network flows, in: U. Pape, ed.,Discrete Structures and Algorithms (Carl Hansen, Munich, 1980) 181–191.

    Google Scholar 

  34. B. Rothschild and A. Whinston, Feasibility of two-commodity network flows,Operations Research 14 (1966) 1121–1129.

    MATH  MathSciNet  Google Scholar 

  35. E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs,Operations Research 34 (1986) 250–256.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by European Union grant INTAS-93-2530.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karzanov, A.V. Multiflows and disjoint paths of minimum total cost. Mathematical Programming 78, 219–242 (1997). https://doi.org/10.1007/BF02614372

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614372

Keywords

Navigation