Skip to main content
Log in

Wheel inequalities for stable set polytopes

  • Published:
Mathematical Programming Submit manuscript

Abstract

We introduce new classes of valid inequalities, called wheel inequalities, for the stable set polytopeP G of a graphG. Each “wheel configuration” gives rise to two such inequalities. The simplest wheel configuration is an “odd” subdivisionW of a wheel, and for these we give necessary and sufficient conditions for the wheel inequality to be facet-inducing forP W . Generalizations arise by allowing subdivision paths to intersect, and by replacing the “hub” of the wheel by a clique. The separation problem for these inequalities can be solved in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra II: stable sets.SIAM Journal on Discrete Mathematics 7 (1994) 359–371.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra III: graphs with noW 4 minor.SIAM Journal on Discrete Mathematics 7 (1994) 372–389.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.A. Bondy and U.S.R. Murty,Graph Theory with Applications (North-Holland, Amsterdam, 1976).

    Google Scholar 

  4. E. Cheng, Inequalities of wheels with chords for stable set polytopes, Manuscript (1995).

  5. E. Cheng, Wheel Inequalities for Stable Set Polytopes. Ph.D. Thesis, University of Waterloo (1995).

  6. E. Cheng and W.H. Cunningham. Separation problems for the stable set polytope. in: E. Balas and J. Clausen, eds.,The 4th Integer Programming and Combinatorial Optimization Conference Proceedings (Springer, Berlin, 1995) 65–79.

    Google Scholar 

  7. J. Cheriyan, W.H. Cunningham, L. Tunçel and Y. Wang. A linear programming and rounding approach to max 2-sat, in: D.S. Johnson and M.A. Trick (eds.),Cliques Coloring, and Satisfiability (American Mathematical Society, Providence, RI, 1996) 395–414.

    Google Scholar 

  8. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.Discrete Mathematics 4 (1973) 305–337.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Chvátal. On certain polytopes associated with graphs.Journal of Combinatorial Theory, Series B 18 (1975) 138–154.

    Article  MATH  MathSciNet  Google Scholar 

  10. W.H. Cunningham, L. Tunçel and Y. Wang, A polyhedral approach to maximum 2-satisfiability, in preparation.

  11. J. Fonlupt and J.P. Uhry. Transformations which preserve perfectness andh-perfectness of graphs,Annals of Discrete Mathematics 16 (1985) 83–95.

    MathSciNet  Google Scholar 

  12. A.M.H. Gerards, A min-max relation for stable sets in graphs with no odd-K 4.Journal of Combinatorial Theory, Series B 47 (1989) 330–348.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Giles and L.E. Trotter, Jr., On stable set polyhedra forK 13-free graphs,Journal of Combinatorial Theory, Series B 31 (1981) 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Grötschel, L. Lovász and A. Schrijver,Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1988).

    MATH  Google Scholar 

  15. M. Grötschel and W.R. Pulleyblank, Weakly bipartite graphs and the max-cut problem.Operations Research Letters 1 (1981) 23–27.

    Article  MATH  MathSciNet  Google Scholar 

  16. A.R. Mahjoub, On the stable set polytope of a series-parallel graph,Mathematical Programming 40 (1988) 53–57.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.L. Nemhauser and L.E. Trotter, Jr., Properties of vertex packing and independence system polyhedra,Mathematical Programming 8 (1975) 232–248.

    Article  MATH  MathSciNet  Google Scholar 

  18. G.L. Nemhauser and L.A. Wolsey,Integer and Combinatorial Optimization (Wiley, New York, 1988).

    MATH  Google Scholar 

  19. M.W. Padberg, On the facial structure of set packing polyhedra,Mathematical Programming 5 (1973) 199–215.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Tesch,Disposition von Anruf-Sammehaxis (Deutscher Universitäts Verlag, Wiesbaden).

  21. L.E. Trotter, Jr., A class of facet producing graphs for vertex packing polyhedra,Discrete Mathematics 12 (1975) 373–388.

    Article  MATH  MathSciNet  Google Scholar 

  22. L.A. Wolsey, Further facet generating procedures for vertex packing polytopes,Mathematical Programming 11 (1976) 158–163.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Research partially supported by scholarships from the Ontario Ministry of Colleges and Universities.

About this article

Cite this article

Cheng, E., Cunningham, W.H. Wheel inequalities for stable set polytopes. Mathematical Programming 77, 389–421 (1997). https://doi.org/10.1007/BF02614623

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614623

Keywords