Skip to main content
Log in

A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In this paper we study a multi-grid method for the numerical solution of nonlinear systems of equations arising from the discretization of ill-posed problems, where the special eigensystem structure of the underlying operator equation makes it necessary to use special smoothers. We provide uniform contraction factor estimates and show that a nested multigrid iteration together with an a priori or a posteriori chosen stopping index defines a regularization method for the ill-posed problem, i.e., a stable solution method, that converges to an exact solution of the underlying infinite-dimensional problem as the data noise level goes to zero, with optimal rates under additional regularity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Braess, W. Hackbusch: A new convergence proof for the multi-grid method including theV-cycle. SIAM J. Numer. Anal.20, 967–975 (1983)

    Article  MATH  Google Scholar 

  2. J. Bramble: Multigrid methods. Pitman Research Notes in Mathematics Series 294, Longman Scientific & Technical, Harlow, UK, 1993

    MATH  Google Scholar 

  3. A. Brandt: Multilevel adaptive solutions to boundary value problems Math. Comp.31, 333–390 (1977)

    MATH  Google Scholar 

  4. C.G. Ciarlet: The Finite Element Method for Elliptic Problems, North Holland, Amsterdam — New York — Oxford, 1978

    MATH  Google Scholar 

  5. P. Deuflhard, H. W. Engl, O. Scherzer: A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Problems14, 1081–1106 (1998)

    Article  MATH  Google Scholar 

  6. P. Deuflhard, G. Heindl: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal.16, 1–10 (1979)

    Article  MATH  Google Scholar 

  7. H.W. Engl: Integralgleichungen. Springer, Wien — New York, 1997

    MATH  Google Scholar 

  8. H. W. Engl, A. Neubauer: On projection methods for solving linear ill-posed problems. In: A. Vogel, ed., Model Optimization in Exploration Geophysics, Vieweg, Braunschweig, 1987, 73–92

    Google Scholar 

  9. H.W. Engl, M. Hanke, A. Neubauer: Regularization of Inverse Problems. Kluwer, Dordrecht, 1996

    MATH  Google Scholar 

  10. C.W. Groetsch: Inverse Problems in Mathematical Sciences. Vieweg, Braunschweig, 1993

    MATH  Google Scholar 

  11. C.W. Groetsch, A. Neubauer: Convergence of a general projection method for an operator equation of the first kind. Houston J. Mathem.14, 201–207 (1988)

    MATH  Google Scholar 

  12. W. Hackbusch: Multi-Grid Methods and Applications. Springer, Berlin, 1985

    MATH  Google Scholar 

  13. M. Hanke, A. Neubauer, O. Scherzer: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math.72, 21–37 (1995)

    Article  MATH  Google Scholar 

  14. M. Hanke, C.R. Vogel: Two-level preconditioners for regularized inverse problems I: Theory. Numer. Math.83, 385–402 (1999)

    Article  MATH  Google Scholar 

  15. B. Blaschke-Kaltenbacher, H.W. Engl: Regularization methods for nonlinear ill-posed problems with applications to phase reconstruction. H.W. Engl, A.K. Louis, W. Rundell, eds., Inverse Problems in Medical Imaging and Nondestructive Testing, Springer, Vienna-New York, 1997

    Google Scholar 

  16. B. Kaltenbacher: On Broyden’s method for nonlinear ill-posed problems. Numerical Functional Analysis and Optimization19, 807–833 (1998)

    Article  MATH  Google Scholar 

  17. B. Kaltenbacher: A projection-regularized Newton method for nonlinear ill-posed problems with application to parameter identification problems with finite element discretization. SIAM J. Numer. Anal.37 (2000) 1885–1908

    Article  MATH  Google Scholar 

  18. B. Kaltenbacher: On the regularizing properties of a full multigrid method for ill-posed problems. Inverse Problems 17 (2001), special issue to celebrate Pierre Sabatier’s 65th birthday, 767–788

  19. B. Kaltenbacher: Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems. Inverse Problems16, 1523–1539 (2000)

    Article  MATH  Google Scholar 

  20. J.T. King: Multilevel algorithms for ill-posed problems. Numer. Math.61, 311–334 (1992)

    Article  MATH  Google Scholar 

  21. A.K. Louis: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, 1989

    MATH  Google Scholar 

  22. V.A. Morozov: Regularization Methods for Ill-Posed Problems. CRC Press, Boca Raton, 1993

    MATH  Google Scholar 

  23. F. Natterer: Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math.28, 329–341 (1977)

    Article  MATH  Google Scholar 

  24. F. Natterer: The Mathematics of Computerized Tomography. Teubner, Stuttgart, 1986

    MATH  Google Scholar 

  25. A. Rieder: A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization. Numer. Math.75, 501–522 (1997)

    Article  MATH  Google Scholar 

  26. O. Scherzer: Convergence criteria of iterative methods based on Landweber iteration for nonlinear problems. J. Math. Anal. Appl.194, 911–933 (1995)

    Article  MATH  Google Scholar 

  27. O. Scherzer, H.W. Engl, K. Kunisch: Optimal a posteriori parameter choice for Tikhonov regularization leading to optimal convergence rates. SIAM J. Numer. Anal.30, 1796–1838 (1993)

    Article  MATH  Google Scholar 

  28. A.N. Tikhonov, V.A. Arsenin: Methods for Solving Ill-Posed Problems. Nauka, Moskau, 1979

    Google Scholar 

  29. G.M. Vainikko, A.Y. Veterennikov: Iteration Procedures in Ill-Posed Problems. Nauka, Moscow, 1986. In Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Fonds zur Förderung der wissenschaftlichen Forschung under grant T 7-TEC and project F1308 within Spezialforschungsbereich 13

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltenbacher, B., Schicho, J. A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems. Numer. Math. 93, 77–107 (2002). https://doi.org/10.1007/BF02679438

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679438

Mathematics Subject Classification