Skip to main content
Log in

Dynamical sources in information theory: Fundamental intervals and word prefixes

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A quite general model of source that comes from dynamical systems theory is introduced. Within this model, some basic problems of algorithmic information theory contexts are analysed. The main tool is a new object, the generalized Ruelle operator, which can be viewed as a “generating” operator for fundamental intervals (associated to information sharing common prefixes). Its dominant spectral objects are linked with important parameters of the source, such as the entropy, and play a central rôle in all the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avnaim, F., Boissonnat, J.-D., Devillers, O., Preparata, F., and Yvinec, M. Evaluation of a new method to compute signs of determinants. InProceedings of the Eleventh Annual ACM Symposium on Computational Geometry, 1995, pp. C16–C17. Full paper inAlgorithmica,17 (1997), 111–132.

  2. Bedford, T., Keane, M., and Series, C., eds.Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Oxford University Press, 1991.

  3. Beeler, M., Gosper, R. W., and Schroeppel, R. HAKMEM. Memorandum 239, Artificial Intelligence Laboratory, M.I.T., Feb. 1972.

  4. Billingsley, P.Ergodic Theory and Information. Wiley, New York, 1965.

    MATH  Google Scholar 

  5. Bogomolny, E. B., and Carioli, M. Quantum maps from transfer operators.Physica D 67 (1993), 88–112.

    Article  MATH  MathSciNet  Google Scholar 

  6. Daudé, H., Flajolet, P., and Vallée, B. An average-case analysis of the Gaussian algorithm for lattice reduction.Combinatorics, Probability and Computing 6 (1997), 397–433.

    Article  MATH  MathSciNet  Google Scholar 

  7. Delange, H. Généralisation du Théorème d’Ikehara.Annales Scientifiques de l’Ecole Normale Supériore 71 (1954), 213–242.

    MATH  MathSciNet  Google Scholar 

  8. Devroye, L. A probabilistic analysis of the height of tries and of the complexity of triesort.Acta Informatica,21 (1984), 229–237.

    Article  MATH  MathSciNet  Google Scholar 

  9. Efrat, I. Dynamics of the continued fraction map and the spectral theory ofSL(2,Z).Inventiones Mathematicae 114 (1993), 207–218.

    Article  MATH  MathSciNet  Google Scholar 

  10. Faivre, C. Distribution of Lévy’s constants for quadratic numbers.Acta Arithmetica 61(1) (1992), 13–34.

    MATH  MathSciNet  Google Scholar 

  11. Fayolle, G., Flajolet, P., and Hofri, M. On a functional equation arising in the analysis of a protocol for a multi-accessbroadcast channel.Advances in Applied Probability 18 (1986), 441–472.

    Article  MATH  MathSciNet  Google Scholar 

  12. Flajolet, P., Gourdon, X., and Dumas, P. Mellin transforms and asymptotics: harmonic sums.Theoretical Computer Science 144(1–2) (1995), 3–58.

    Article  MATH  MathSciNet  Google Scholar 

  13. Flajolet, P., and Vallée, B. Continued fraction algorithms, functional operators and structure constants.Theoretical Computer Science 194 (1998), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  14. Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires.Memoirs of the American Mathematical Society 16 (1955).

  15. Grothendieck, A. La théorie de Fredholm.Bulletin de la Société Mathématique de France 84 (1956), 319–384.

    MATH  MathSciNet  Google Scholar 

  16. Hwang, H.-K. Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques. Ph.D. thesis, École Polytechnique, Dec. 1994.

  17. Kato, T.Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  18. Knuth, D.E.Computers and Typesetting, MF: the program, Volume D. Addison-Wesley, Reading, MA, 1986.

    Google Scholar 

  19. Krasnoselskii, M.Positive Solutions of Operator Equations. Noordhoff, Groningen, 1964.

    Google Scholar 

  20. Lorch, E. R.Spectral Theory. Oxford University Press, New York, 1962.

    MATH  Google Scholar 

  21. Mayer, D. H. On a ζ function related to the continued fraction transformation.Bulletin de la Société Mathématique de France 104 (1976), 195–203.

    MATH  Google Scholar 

  22. Mayer, D. H. Spectral properties of certain composition operators arising in statistical mechanics,Communications in Mathematical Physics 68 (1979), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mayer, D. H. Continued fractions and related transformations. InErgodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane, and C. Series, eds. Oxford University Press, Oxford, 1991, pp. 175–222.

    Google Scholar 

  24. Mayer, D. H. Private communication.

  25. Mischyavichyus, G. A. Estimate of the remainder in the limit theorem for the denominators of continued fractions. Litovskiǐ Matematičeskiǐ Sbornik21(3), (1987), 63–74.

    Google Scholar 

  26. Morita, T. Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partitions.Journal of the Mathematical Society of Japan 46(2) (1994), 309–343. Corrections, op. cit.47(1) (1997), 191–192.

    MATH  MathSciNet  Google Scholar 

  27. Philipp, W. Ein zentraler Grenzwertsatz mit Anwendungen auf die Zahlentheorie.Zeitschrift für Wahrscheinlichkeitstheorie 8 (1967), 195–203.

    Google Scholar 

  28. Pollicott, M. A complex Ruelle-Perron-Frobenius Theorem and two counterexamples.Ergodic Theory and Dynamical Systems 4 (1984), 135–146.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ruelle, D.Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.

    MATH  Google Scholar 

  30. Ruelle, D.Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval. Volume 4 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1994.

    MATH  Google Scholar 

  31. Schwartz, H. Composition operators inH p. Ph.D. Thesis, University of Toledo.

  32. Shannon, C. A mathematical theory of communication.Bell Systems Technical Journal 27 (1948), 379–423, 623–656.

    MathSciNet  MATH  Google Scholar 

  33. Shapiro, J.Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

    Google Scholar 

  34. Shapiro, J. Compact composition operators on spaces of boundary regular holomorphic functions.Proceedings of the AMS 100 (1997), 49–57.

    Article  Google Scholar 

  35. Shapiro, J., and Taylor, P.D. Compact, nuclear, and Hilbert-Schmidt composition operators onH 2.Indiana University Mathematics Journal 23 (1973), 471–496.

    Article  MATH  MathSciNet  Google Scholar 

  36. Szpankowski, W., and Frieze, A. Greedy algorithms for the shortest common superstring that are asymptotically optimal. Preprint, 1998

  37. Szpankowski, W., and Luczak, T. A suboptimal lossy date compression based on appoximate pattern matching.IEEE Transactions on Information Theory 43(5) (1997), 1439–1451.

    Article  MATH  MathSciNet  Google Scholar 

  38. Tenenbaum, G.Introduction à la théorie analytique des nombres, vol. 13. Institut Élie Cartan, Nancy, 1990.

    Google Scholar 

  39. Vallée, B. Opérateurs de Ruelle-Mayer généralisés et analyse des algorithmes d’Euclide et de Gauss.Acta Arithmetica 81(2) (1997), 101–144.

    MATH  MathSciNet  Google Scholar 

  40. Vallée, B. Algorithms for computing signs of 2×2 determinants: dynamics and average-case algorithms,Proceedings of the 8th Annual European Symposium on Algorithms, ESA ’97, pp. 486–499. LNCS 1284. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  41. Welsh, D.Codes and Cryptography. Oxford Science Publications, Clarendon Press, Oxford, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Prodinger and W. Szpankowski.

Online publication October 6, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallée, B. Dynamical sources in information theory: Fundamental intervals and word prefixes. Algorithmica 29, 262–306 (2001). https://doi.org/10.1007/BF02679622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679622

Key Words

Navigation