Skip to main content
Log in

Generalized semi-infinite optimization: A first order optimality condition and examples

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a generalized semi-infinite optimization problem (GSIP) of the form (GSIP) min{f(x)‖xεM}, where M={x∈ℝn|hi(x)=0i=l,...m, G(x,y)⩾0, y∈Y(x)} and all appearing functions are continuously differentiable. Furthermore, we assume that the setY(x) is compact for allx under consideration and the set-valued mappingY(.) is upper semi-continuous. The difference with a standard semi-infinite problem lies in thex-dependence of the index setY. We prove a first order necessary optimality condition of Fritz John type without assuming a constraint qualification or any kind of reduction approach. Moreover, we discuss some geometrical properties of the feasible setM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh, London, 1963.

    Google Scholar 

  2. W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Rev. 15 (1973) 591–603.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Hettich, K.O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev. 35 (1993) 380–429.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Hettich, P. Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung, Teubner Studienbücher, Stuttgart, 1982.

    MATH  Google Scholar 

  5. R. Hettich, G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Optimization 34 (1995) 195–211.

    Article  MATH  MathSciNet  Google Scholar 

  6. T.J. Graettinger, B. H. Krogh The acceleration radius: A global performance measure for robotic manipulators, IEEE J. Robotics and Automation 4 (1988) 60–69.

    Article  Google Scholar 

  7. R. Hettich, G. Still, Semi-infinite programming models in robotics, in: J. Guddat, H.Th. Jongen, B. Kummer, F. Nožička (Eds.), Parametric Optimization and Related Topics II, Akademie Verlag, Berlin, 1991, pp. 112–118.

    Google Scholar 

  8. A. Kaplan, R. Tichatschke, On a class of terminal variational problems in: J. Guddat, H.Th. Jongen, F. Nožička, G. Still, F. Twilt (Eds.), Parametric Optimization and Related Topics IV, Peter Lang Verlag, Frankfurt a.M., 1997, pp. 185–199.

    Google Scholar 

  9. R. Hettich, H.Th. Jongen, Semi-infinite programming: conditions of optimality and applications, in: J. Stoer (Ed.), Optimization Techniques, Part 2, Lecture Notes in Control and Information Science 7, Springer, Heidelberg, New York, 1978, pp. 1–11.

    Chapter  Google Scholar 

  10. H.Th. Jongen, J.-J. Rückmann, O. Stein, Disjunctive optimization: Critical point theory, J. Optim. Theory Appl. 93 (2) (1997) 321–336.

    Article  MATH  MathSciNet  Google Scholar 

  11. E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  12. H.Th. Jongen, P. Jonker, F. Twilt, Nonlinear Optimization in ℝn. II. Transversality, Flows, Parametric Aspects, Peter Lang Verlag, Frankfurt a.M., 1986.

    Google Scholar 

  13. H.Th. Jongen, F. Twilt, G.-W. Weber, Semi-infinite optimization: Structure and stability of the feasible set, J. Optim. Theory Appl. 72 (1992) 529–552.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Kojima, Strongly stable stationary solutions in nonlinear programs, in: S.M. Robinson (Ed.), Analysis and Computation of Fixed Points, Academic Press, New York, 1980, pp. 93–138.

    Google Scholar 

  15. J.-J. Rückmann, On existence and uniqueness of stationary points (submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stein.

Additional information

This work was partially supported by the “Deutsche Forschungsgemeinschaft” through the Graduiertenkolleg “Mathematische Optimierung” at the University of Trier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongen, H.T., Rückmann, J.J. & Stein, O. Generalized semi-infinite optimization: A first order optimality condition and examples. Mathematical Programming 83, 145–158 (1998). https://doi.org/10.1007/BF02680555

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680555

Keywords