Abstract
We consider a generalized semi-infinite optimization problem (GSIP) of the form (GSIP) min{f(x)‖xεM}, where M={x∈ℝn|hi(x)=0i=l,...m, G(x,y)⩾0, y∈Y(x)} and all appearing functions are continuously differentiable. Furthermore, we assume that the setY(x) is compact for allx under consideration and the set-valued mappingY(.) is upper semi-continuous. The difference with a standard semi-infinite problem lies in thex-dependence of the index setY. We prove a first order necessary optimality condition of Fritz John type without assuming a constraint qualification or any kind of reduction approach. Moreover, we discuss some geometrical properties of the feasible setM.
Similar content being viewed by others
References
C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh, London, 1963.
W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Rev. 15 (1973) 591–603.
R. Hettich, K.O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev. 35 (1993) 380–429.
R. Hettich, P. Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung, Teubner Studienbücher, Stuttgart, 1982.
R. Hettich, G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Optimization 34 (1995) 195–211.
T.J. Graettinger, B. H. Krogh The acceleration radius: A global performance measure for robotic manipulators, IEEE J. Robotics and Automation 4 (1988) 60–69.
R. Hettich, G. Still, Semi-infinite programming models in robotics, in: J. Guddat, H.Th. Jongen, B. Kummer, F. Nožička (Eds.), Parametric Optimization and Related Topics II, Akademie Verlag, Berlin, 1991, pp. 112–118.
A. Kaplan, R. Tichatschke, On a class of terminal variational problems in: J. Guddat, H.Th. Jongen, F. Nožička, G. Still, F. Twilt (Eds.), Parametric Optimization and Related Topics IV, Peter Lang Verlag, Frankfurt a.M., 1997, pp. 185–199.
R. Hettich, H.Th. Jongen, Semi-infinite programming: conditions of optimality and applications, in: J. Stoer (Ed.), Optimization Techniques, Part 2, Lecture Notes in Control and Information Science 7, Springer, Heidelberg, New York, 1978, pp. 1–11.
H.Th. Jongen, J.-J. Rückmann, O. Stein, Disjunctive optimization: Critical point theory, J. Optim. Theory Appl. 93 (2) (1997) 321–336.
E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
H.Th. Jongen, P. Jonker, F. Twilt, Nonlinear Optimization in ℝn. II. Transversality, Flows, Parametric Aspects, Peter Lang Verlag, Frankfurt a.M., 1986.
H.Th. Jongen, F. Twilt, G.-W. Weber, Semi-infinite optimization: Structure and stability of the feasible set, J. Optim. Theory Appl. 72 (1992) 529–552.
M. Kojima, Strongly stable stationary solutions in nonlinear programs, in: S.M. Robinson (Ed.), Analysis and Computation of Fixed Points, Academic Press, New York, 1980, pp. 93–138.
J.-J. Rückmann, On existence and uniqueness of stationary points (submitted for publication).
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the “Deutsche Forschungsgemeinschaft” through the Graduiertenkolleg “Mathematische Optimierung” at the University of Trier.
Rights and permissions
About this article
Cite this article
Jongen, H.T., Rückmann, J.J. & Stein, O. Generalized semi-infinite optimization: A first order optimality condition and examples. Mathematical Programming 83, 145–158 (1998). https://doi.org/10.1007/BF02680555
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02680555