Skip to main content
Log in

Fast evaluation of vector splines in three dimensions

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Vector spline techniques have been developed as general-purpose methods for vector field reconstruction. However, such vector splines involve high computational complexity, which precludes applications of this technique to many problems using large data sets. In this paper, we develop a fast multipole method for the rapid evaluation of the vector spline in three dimensions. The algorithm depends on a tree-data structure and two hierarchical approximations: an upward multipole expansion approximation and a downward local Taylor series approximation. In comparison with the CPU time of direct calculation, which increases at a quadratic rate with the number of points, the presented fast algorithm achieves a higher speed in evaluation at a linear rate. The theoretical error bounds are derived to ensure that the fast method works well with a specific accuracy. Numerical simulations are performed in order to demonstrate the speed and the accuracy of the proposed fast method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amodei, L., Benbourhim, M. N.: A vector spline approximation with application to meteorology. In: Curves and surfaces (Laurent, P. J., Le Mehaute, A., Schumaker, L. L. eds.), pp. 5–10. Boston: Academic Press 1991.

    Google Scholar 

  2. Suter, D.: Motion estimation and vector splines. In: Proc. CVPR’94, Seattle WA, pp. 939–942, IEEE, June 1994. Available from http://www.batman.eng.monash.edu.au/suter_publications/finalcvpr.ps.gz.

  3. Chen, F., Suter, D.: Elastic spline models for human cardiac motion estimation. IEEE Nonrigid and Articulated Motion Workshop, pp. 120–127, Puerto Rico, June 1997.

  4. Amodei, L., Benbourhim, M. N.: A vector spline approximation. J. Approx. Theory67, 51–79 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  5. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys.73, 325–348 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  6. Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput.9, 669–686 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. Graghicescu, C. I.: An efficient implementation of particle methods for the incompressible Euler equations. SIAM J. Numer. Anal.31, 1090–1108 (1994).

    Article  MathSciNet  Google Scholar 

  8. Ding, H., Karasawa, N., Goddard, W. A.: Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys.97, 4309–4315 (1992).

    Article  Google Scholar 

  9. McKenney, A.: An adaptation of the fast multipole method for evaluating layer potentials in two dimensions. Comput. Math. Appl.31, 33–57 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  10. Christiansen, D., Perram, J. W., Petersen, H. G.: On the fast multipole method for computing the energy of periodic assemblies of charged and dipolar particles. J. Comput. Phys.107, 403–405 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  11. Sølvason, D., Kolafa, J., Petersen, H. G., Perram, J. W.: A rigorous comparison of the Ewald method and the fast multipole method in two dimensions. Comput. Phys. Comm.87, 307–318 (1995).

    Article  MATH  Google Scholar 

  12. Greengard, L., Rokhlin, V.: The rapid evaluation of potential fields in three dimensions. In: Vortex methods (Anderson, C., Greengards, C., eds.), pp. 121–141. Berlin Heidelberg New York Tokyo: Springer 1987.

    Google Scholar 

  13. Zhao, F.: An o(N) algorithm for three-dimensional N-body simulations. Technical Report 995, MIT Artificial Intelligence Laboratory, 1987.

  14. Lustig, S. R.: Telescoping fast multipole methods using Chebyshev economization. J. Comp. Phys.122, 317–322 (1995).

    Article  MATH  Google Scholar 

  15. Schmidt, K. E., Lee, M. A.: Implementing the fast multipole method in three dimensions. J. Stat. Phys.63, 1223–1235 (1991).

    Article  Google Scholar 

  16. Zhao, F., Johnsson, S. L.: The parallel multipole method on the connection machine. SIAM J. Sci. Stat. Comput.12, 1420–1437 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  17. Anderson, C. R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput.13, 923–947 (1992).

    Article  MATH  Google Scholar 

  18. Elliott, W. D., Board, J. A. Jr,: Fast Fourier transform accelerated fast multipole algorithm. SIAM J. Sci. Comput.17, 398–415 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. Petersen, H. G., Sølvason, D., Perram, J. W., Smith, E. R.: Error estimates for the fast multipole method. I. the two-dimensional case. Proc. R. Soc. London Ser. A448, 389–400 (1995).

    Article  MATH  Google Scholar 

  20. Petersen, H. G., Smith, E. R., Sølvason, D.: Error estimates for the fast multipole method. II. the three-dimensional case. Proc. London Ser. A448, 401–418 (1995).

    MATH  Google Scholar 

  21. Boyd, J. P.: Multipole expansions and pseudospectral cardinal functions: A new generalization of the fast Fourier transform. J. Comput. Phys.103, 184–186 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  22. Brandt, A.: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Commun.65, 24–38 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  23. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math.44, 141–183 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  24. Beatson, R. K., Newsam, G. N.: Fast evaluation of radial basis functions: 1. Comp. Math. Appl.24, 7–20 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. Suter, D.: Fast evaluation of splines using Poisson formula. J. Appl. Sci. Comput.1, 70–87 (1994).

    MathSciNet  Google Scholar 

  26. Beatson, R. K., Light, W. A.: Fast evaluation of radial basis functions. Methods for 2-dimensional polyharmonic splines. IMA J. Numer. Anal.17, 343–372 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  27. Chen, F., Suter, D.: Fast evaluation of vector splines in two dimensions. The International Association for Mathematics and Computers in Simulation — IMACS1 469–474 (1997).

    Google Scholar 

  28. Macrobert, T. M.: Spherical harmonics. New York: Pergamon Press 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Suter, D. Fast evaluation of vector splines in three dimensions. Computing 61, 189–213 (1998). https://doi.org/10.1007/BF02684350

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684350

AMS Subject Classifications

Key words

Navigation