Skip to main content

Tangential decomposition

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we present the tangential block decomposition for block-tridiagonal matrices which is in many aspects similar to the frequency filtering method by Wittum [8] and also to the tangential frequency filtering decomposition by Wagner [6]–[7]. In opposite to the methods of Wittum and Wagner, for the class of model problems our approach does not use any test vectors for its implementation. Similar to many iterative methods, it needs only bounds for extremal eigenvalues. Theoretical properties of our scheme are similar to those for the ADI-method. The practical convergence of the presented method is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Axelson, O., Polman, B.: A robust preconditioner based on algebraic substructuring and two-level grids. In: Robust multigrid methods (Hackbusch, W., ed.), pp. 1–26. NNFM Bd. 23. Braunschweig: Vieweg-Verlag 1989.

    Google Scholar 

  2. Hackbusch, W.: Iterative solution of large sparse systems of equations. New York: Springer 1993.

    MATH  Google Scholar 

  3. Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In: Multigrid methods, Proceedings, Köln-Porz, 1981 (Hackbusch, W., Trottenberg, V., eds.), pp. 502–534. Berlin Heidelberg, New York Tokyo: Springer.

    Google Scholar 

  4. Samarskij, A. A., Nikolaev, E. S.: Numerical methods for grid equations. Vol. 2: Iterative methods. Basel: Birkhäuser 1989.

    Google Scholar 

  5. Varga, R.: Matrix iterative analysis. Englewood Cliffs: Prentice-Hall 1962.

    Google Scholar 

  6. Wagner, C.: Frequenzfilternde Zerlegungen für unsymmetrische Matrizen und Matrizen mit stark variierenden Koeffizienten. PhD Thesis, University of Stuttgart, 1995.

  7. Wagner, C.: Tangential frequency filtering decompositions for symmetric matrices. Numer. Math.78, 143–163 (1997).

    Article  MATH  Google Scholar 

  8. Wittum, G.: Filternde Zerlegungen—Schnelle Löser für große Gleichungssysteme. Teubner Skripten zur Numerik, Band 1, Stuttgart: Teubner 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzdin, A. Tangential decomposition. Computing 61, 257–276 (1998). https://doi.org/10.1007/BF02684353

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684353

AMS Subject Classifications

Key words