Abstract
In this note, we derive the tight worst case bound √6/2+(1/2)k for scheduling with the MULTIFIT heuristic on two parallel uniform machines withk calls of FFD within MULTIFIT. When MULTIFIT is combined with LPT as an incumbent algorithm the worst case bound decreases to √2+1/2+(1/2)k.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chen, B.: Parametric bounds for LPT scheduling on uniform processors. Acta Math. Appl. Sinica7, 67–73 (1991).
Chen, B.: Tighter bound for MULTIFIT scheduling on uniform processors. Discr. Appl. Math.31, 227–260 (1991).
Coffman, E. G., Garey, M. R., Johnson, D. S.: An application of binpacking to multiprocessor scheduling, SIAM J. Comput.7, 1–17 (1978).
Dobson, G.: Scheduling independent tasks on uniform processors. SIAM J. Comput.13, 705–716 (1984).
Friesen, D. K.: Tighter bounds for LPT scheduling on uniform processors. SIAM J. Comput.16, 554–560 (1987).
Friesen, D. K., Langston, M. A.: Bounds for MULTIFIT scheduling on uniform processors. SIAM J. Comput.12, 60–70 (1983).
Gonzalez, T., Ibarra, O. H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM J. Comput.6, 155–166 (1977).
Hochbaum, D. S., Shmoys, D. B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput.17, 539–551 (1988).
Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling non-identical processors. J. ACM56, 317–327 (1976).
Mireault, P., Orlin, J. B., Vohra, R. V.: A parametric worst case analysis of the LPT heuristic for two uniform machines. Oper. Res.45, 116–125 (1997).
Author information
Authors and Affiliations
Additional information
Partially supported by SFB F003 “Optimierung und Kontrolle”, Projektbereich Diskrete Optimierung and by the National Natural Science Foundation of China, Grant 19701028.
Rights and permissions
About this article
Cite this article
Burkard, R.E., He, Y. A note on MULTIFIT scheduling for uniform machines. Computing 61, 277–283 (1998). https://doi.org/10.1007/BF02684354
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684354