Skip to main content

A note on MULTIFIT scheduling for uniform machines

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this note, we derive the tight worst case bound √6/2+(1/2)k for scheduling with the MULTIFIT heuristic on two parallel uniform machines withk calls of FFD within MULTIFIT. When MULTIFIT is combined with LPT as an incumbent algorithm the worst case bound decreases to √2+1/2+(1/2)k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, B.: Parametric bounds for LPT scheduling on uniform processors. Acta Math. Appl. Sinica7, 67–73 (1991).

    Article  MATH  Google Scholar 

  2. Chen, B.: Tighter bound for MULTIFIT scheduling on uniform processors. Discr. Appl. Math.31, 227–260 (1991).

    Article  MATH  Google Scholar 

  3. Coffman, E. G., Garey, M. R., Johnson, D. S.: An application of binpacking to multiprocessor scheduling, SIAM J. Comput.7, 1–17 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobson, G.: Scheduling independent tasks on uniform processors. SIAM J. Comput.13, 705–716 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  5. Friesen, D. K.: Tighter bounds for LPT scheduling on uniform processors. SIAM J. Comput.16, 554–560 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  6. Friesen, D. K., Langston, M. A.: Bounds for MULTIFIT scheduling on uniform processors. SIAM J. Comput.12, 60–70 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  7. Gonzalez, T., Ibarra, O. H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM J. Comput.6, 155–166 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  8. Hochbaum, D. S., Shmoys, D. B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput.17, 539–551 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling non-identical processors. J. ACM56, 317–327 (1976).

    Article  MathSciNet  Google Scholar 

  10. Mireault, P., Orlin, J. B., Vohra, R. V.: A parametric worst case analysis of the LPT heuristic for two uniform machines. Oper. Res.45, 116–125 (1997).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by SFB F003 “Optimierung und Kontrolle”, Projektbereich Diskrete Optimierung and by the National Natural Science Foundation of China, Grant 19701028.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkard, R.E., He, Y. A note on MULTIFIT scheduling for uniform machines. Computing 61, 277–283 (1998). https://doi.org/10.1007/BF02684354

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684354

AMS Subject Classifications

Key words