Abstract
Anisotropic local interpolation error estimates are derived for quadrilateral and hexahedral Lagrangian finite elements with straight edges. These elements are allowed to have diameters with different asymptotic behaviour in different space directions. The case of affine elements (parallel-epipeds) with arbitrarily high degree of the shape functions is considered first. Then, a careful examination of the multi-linear map leads to estimates for certain classes of more general, isoparametric elements. As an application, the Galerkin finite element method for a reaction diffusion problem in a polygonal domain is considered. The boundary layers are resolved using anisotropic trapezoidal elements.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing47, 277–293 (1992).
Apel, Th., Lube, G.: Local inequalities for anisotropic finite elements and their application to convection-diffusion problems. Preprint SPC94 _ 26, TU Chemnitz-Zwickau, 1994.
Apel, Th., Lube, G.: Anisotropic mesh refinement in stabilized Galerkin methods. Number. Math.74, 261–282 (1996).
Apel, Th., Lube, G.: Anisotropic mesh refinement for singularly perturbed reaction diffusion problems. Preprint SFB393/96-11, TU Chemnitz-Zwickau, 1996 (revised version will appear in Appl. Numer. Math.)
Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal.13, 214–226 (1976).
Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal.26, 1212–1240 (1989).
Ciarlet, P., Raviart, P.-A.: Interpolation theory over curved elements with applications to the finite element method. Comput. Meth. Appl. Mech. Eng.1, 217–249 (1972).
Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.
Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations, Theory and algorithms. Springer Series in Computational Mathematics, Vol. 5. Berlin Heidelberg New York Tokyo: Springer 1986.
Jamet, P.: Estimations d’erreur pour des éléments finis droits presque dégénérés. R.A.I.R.O. Anal. Numér.10, 43–61 (1976).
Kornhuber, R., Roitzsch, R.: On adaptive grid refinement in the presence of internal and boundary layers. IMPACT of Computing Sci. Eng.2, 40–72 (1990).
Kunert, G.: Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TU Chemnitz, 1997.
Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math.36, 223–232 (1991).
Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29, 513–520 (1992).
Lang, J.: An adaptive finite element method for convection-diffusion problems by interpolation techniques. Technical Report TR 91-4, ZIB Berlin, 1991.
Maden, N., Stynes, M.: Efficient generation of oriented meshes for solving convection diffusion problems. Technical report, University College Cork, Ireland, 1996.
Maischak, M.: hp-Methoden für Randintegralgleichungen bei 3D-Problemen, Theorie und Implementierung. PhD thesis, Universität Hannover, 1996.
Oganesyan, L. A., Rukhovets, L. A.: Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan, 1979. (in Russian)
von Petersdorff, T.: Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximationen mit Randelementmethoden. PhD thesis, TH Darmstadt, 1989.
Rachowicz, W.P.: An anisotropic h-type mesh refinement strategy. Comput. Methods Appl. Mech. Eng.109, 169–181 (1993).
Shishkin, G. I.: Mesh approximations of singularly perturbed elliptic and parabolic problems. Russ. Acad. Sci., Ekaterinburg, 1992. (in Russian)
Siebert, K.: An a posteriori error estimator for anisotropic refinement. Numer. Math.73, 373–398 (1996).
Synge, J. L.: The hypercircle in mathematical physics. Cambridge: Cambridge University Press 1957.
Xenophontos, Chr.: The hp finite element method for singularly perturbed problems. PhD thesis, University of Maryland, 1996.
Ženíšek, A., Vanmaele, M.: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math.72, 123–141 (1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Apel, T. Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60, 157–174 (1998). https://doi.org/10.1007/BF02684363
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684363