Skip to main content

Advertisement

The hierarchial preconditioning on unstructured grids

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present the implementation of two hierarchically preconditioned methods for the fast solution of mesh equations that approximate 2D-elliptic boundary value problems on unstructured quasi uniform triangulations. Based on the fictitious space approach the original problem can be embedded into an auxiliary one, where both the hierarchical grid information and the preconditioner are well defined. We implemented the corresponding Yserentant preconditioned conjugate gradient method as well as thebpx-preconditioned cg-iteration having optimal computational costs. Several numerical examples demonstrate the efficiency of the artificially constructed hierarchical methods which can be of importance in industrial engineering, where often only the nodal coordinates and the element connectivity of the underlying (fine) discretization are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aubin, J. P.: Approximation of elliptic boundary value problems. New York London Sydney Toronto: Wiley-Interscience, 1972.

    MATH  Google Scholar 

  2. Bank, R. E., Xu, J.: The hierarchical basis multigrid method and incomplete LU decomposition. Cont. Math.180, 163–174 (1994).

    MathSciNet  Google Scholar 

  3. Bank, R. E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math.73, 1–36 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  4. Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Comp.55, 1–22 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan, T. F., Smith, B. F.: Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes. Cont. Math.180, 175–190 (1994).

    MathSciNet  Google Scholar 

  6. Ciarlet, Ph.: The finite element method for elliptic problems. Amsterdam: North-Holland, 1977.

    Google Scholar 

  7. Globisch, G.: Robuste Mehrgitterverfahren für einige elliptische Randwertaufgaben in zweidimensionalen Gebieten. Technische Universität Chemnitz, Dissertation, Chemnitz, 1993.

    Google Scholar 

  8. Globisch, G.: parmesh — a parallel mesh generator. Parallel Comput.21, 509–524 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  9. Globisch, G.: The hierarchical preconditioning having unstructured threedimensional grids. Preprint SFB393/97_25, Technische Universität Chemnitz, Chemnitz, 1997.

    Google Scholar 

  10. Groh, U.: FEM auf irregulären hierarchischen Dreiecksnetzen. Preprint SFB393/97_05, Technische Universität Chemnitz, Chemnitz, 1997.

    Google Scholar 

  11. Haase, G., Langer, U., Meyer, A.: Parallelisierung und Vorkonditionierung des CG-Verfahrens durch Gebietszerlegung. In: Bader, G., Rannacher, R., Wittum, G. (eds.) Numerische Algorithmen auf Transputer-Systemen. Teubner-Skripten zur Numerik. Stuttgart: Teubner-Verlag, 1992.

    Google Scholar 

  12. Haase, G., Hommel, Th., Meyer, A., Pester, M.: Bibliotheken zur Entwicklung paralleler Algorithmen. Preprint SPC 95_20, Technische Universität Chemnitz-Zwickau, Chemnitz, 1995.

    Google Scholar 

  13. Heise, B.: Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal.31, 745–759 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. Matsokin, A. M., Nepomnyaschikh, S. V.: The fictitious domain method and explicit continuation operators. Zh. Vychisl. Mat. Mat. Fiz.33, 45–59 (1993).

    Google Scholar 

  15. Meyer, A.: A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing45, 217–234 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  16. Meyer, A., Pester, M.: Verarbeitung von Sparse-Matrizen in Kompaktspeicherform KLZ/KZU. Preprint SPC 94_12, Technische Universität Chemnitz-Zwickau, Chemnitz, 1994.

    Google Scholar 

  17. Nepomnyaschikh, S. V.: Method of splitting into subspaces for solving elliptic boundary value problems in complex-form-domains. Sov. J. Numer. Anal. Math. Model.6, 151–168 (1991).

    MATH  MathSciNet  Google Scholar 

  18. Nepomnyaschikh, S. V.: Mesh theorems of traces, normalization of function traces and their inversion. Sov. J. Numer. Anal. Model.6, 223–242 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  19. Nepomnyaschikh, S. V.: Fictitious space method on unstructured meshes. East-West J. Numer. Math.3, 71–79 (1995).

    MATH  MathSciNet  Google Scholar 

  20. Nepomnyaschikh, S. V.: Preconditioning operators on unstructured grids. In: Nelson, N. D., Manteuffel, T. A., McCormick, S. F., Douglas, C. C. (eds.) Proceedings of the Seventh Copper Mountain Conference on Multigrid Methods. NASA-Conference Publication,3339, 607–621 (1996).

  21. Oganesyan, L. A., Ruchovets, L. A.: Variational difference methods for solving elliptic equations. Izdat. Akad. Nauk Arm. SSR, Erevan (1979) (in Russian).

  22. Oswald, P.: Multilevel finite element approximation: Theory and applications. Teubner Skripten zur Numerik. Stuttgart: B. G. Teubner, 1994.

    Google Scholar 

  23. Queck, W. (ed.): femgp (Finite Element Multigrid Package). Programmdokumentation, Technologieberatungszentrum Parallele Informationsverarbeitung GmbH (TBZ* PARIV), Chemnitz (1993).

    Google Scholar 

  24. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev.34, 581–613 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing56, 215–235 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  26. Yakovlev, G. N.: On traces of piecewise smooth surfaces of functions from the spaceWp/l. Mat. Sbornik74, 526–543 (1967).

    Google Scholar 

  27. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.49, 379–412 (1986).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Globisch, G., Nepomnyaschikh, S.V. The hierarchial preconditioning on unstructured grids. Computing 61, 307–330 (1998). https://doi.org/10.1007/BF02684383

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684383

AMS Subject Classifications

Key words