Skip to main content

Bootstrap based tests for generalized negative binomial distribution

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Goodness of fit test statistics based on the empirical distribution function (EDF) are considered for the generalized negative binomial distribution. The small sample levels of the tests are found to be very close to the nominal significance levels. For small sample sizes, the tests are compared with respect to their simulated power of detecting some alternative hypotheses against a null hypothesis of generalized negative binomial distribution. The discrete Anderson—Darling test is the most powerful among the EDF tests. Two numerical examples are used to illustrate the application of the goodness of fit tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baringhaus, L., Henze, N.: A goodness of fit test for the Poisson distribution based on the empirical generating function. Statistics Prob. Letters13, 269–274 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  2. Conover, H. J.: Kolmogorov goodness of fit test for discontinuous distributions. JASA67, 591–597 (1972).

    MATH  MathSciNet  Google Scholar 

  3. Consul, P. C., Famoye, F.: On the unimodality of generalized negative binomial distribution. Stat. Neerlandica40, 141–144 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  4. Consul, P. C., Famoye, F.: On the generalized negative binomial distribution. Comm. Statistics24, 459–472 (1995).

    Article  MATH  Google Scholar 

  5. Consul, P. C., Gutpa, R. C.: The generalized negative binomial distribution and its characterization by zero regression. SIAM J. Appl. Math.39, 231–237 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  6. Consul, P. C., Shenton, L. R.: Some interesting properties of Lagrangian distributions. Comm. Statistics2, 263–272 (1973).

    MathSciNet  Google Scholar 

  7. Consul, P. C., Shenton, L. R.: On the probabilistic structure and properties of discrete Lagrangian distributions. In: A modern course on statistical distributions in scientific work (Patil, G. P., Kotz, S., Ord, J. K., eds.), vol. 1, pp. 41–57. Boston: Reidel, 1975.

    Google Scholar 

  8. D’Agostino, R. B., Stephens, M. A.: Goodness-of-fit techniques. New York: Marcel Dekker, 1986.

    MATH  Google Scholar 

  9. Famoye, F., Consul, P. C.: A stochastic urn model for the generalized negative binomial distribution. Statistics20, 607–613 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  10. Freedman, L. S.: Watson’sU n/2 statistic for a discrete distribution. Biometrika68, 708–711 (1981).

    MathSciNet  Google Scholar 

  11. Good, I. J.: Generalizations to several variables of Lagrange’s expansion with applications to stochastic processes. Proc. Camb. Phil. Soc.56, 367–380 (1960).

    MATH  MathSciNet  Google Scholar 

  12. Good, I. J.: The Lagrange distributions and branching processes. SIAM J. Appl. Math.28, 270–275 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  13. Horn, S. D.: Goodness-of-fit tests for discrete data: A review and an application to a health impairment scale. Biometrics33, 237–248 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  14. Jain, G. C., Consul, P. C.: A generalized negative binomial distribution. SIAM J. Appl. Math.21, 501–513 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  15. Stephens, M. A.: EDF statistics for goodness of fit and some comparisons. JASA69, 730–737 (1974).

    Google Scholar 

  16. Stute, W., Manteiga, W. G., Quindimil, M. P.: Bootstrap based goodness-of-fit tests. Metrika40, 243–256 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  17. Whittaker, E. T., Watson, G. N.: A course of modern analysis. Cambridge: Cambridge University Press, 1927.

    MATH  Google Scholar 

  18. Yan, J. F.: Cross-linking of polymers with a primary size distribution. Macromolecules12, 260–264 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The support received from the Research Professorship Program at Central Michigan University under the grant #22159 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Famoye, F. Bootstrap based tests for generalized negative binomial distribution. Computing 61, 359–369 (1998). https://doi.org/10.1007/BF02684385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684385

AMS Subject Classifications

Key words