Skip to main content

Variance reduction order using good lattice points in monte carlo methods

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Quasi-Monte Carlo methods and lattice rules with good lattice points give rapidly “good” approximations for numerical integration, but the error estimation is intractable in practice. In the literature, a randomization of these methods, using a combination of Monte Carlo and quasi-Monte Carlo methods, has been done to obtain a confidence interval using the Central Limit Theorem. In this paper we show that for a special class of functions with small Fourier coefficients and using good lattice points, the decreasing of the variance of the combined estimator is faster than the usual one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cranley, R., Patterson, T. N. L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal.13, 904–914 (1976).

    Article  MATH  Google Scholar 

  2. Drmota, M., Tichy, R. F.: Sequences, discrepancies and applications. Lecture Notes in Mathematics, vol. 1651. Berlin Heidelberg New York Tokyo: Springer, 1997.

    MATH  Google Scholar 

  3. Fishman, G. S.: Monte Carlo: concepts, algorithms and applications. Berlin Heidelberg New York Tokyo: Springer, 1997.

    Google Scholar 

  4. Hua, L. K., Wang, Y.: Applications of number theory to numerical analysis: Berlin Heidelberg New York Tokyo: Springer, 1981.

    MATH  Google Scholar 

  5. Joe, S.: Randomization of lattice rules for numerical multiple integration. J. Comp. Appl. Math.3, 299–304 (1990).

    Article  Google Scholar 

  6. Korobov, N. M.: On the computation of optimal coefficients. Sov. Math. Dokl.26, 590–593 (1982).

    MATH  Google Scholar 

  7. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-SIAM 63, Philadelphia, 1992.

    MATH  Google Scholar 

  8. Niederreiter, H.: Improved error bounds for lattice rules. J. Complexity9, 60–75 (1993).

    Article  MATH  Google Scholar 

  9. Shaw, J. E. H.: A quasirandom approach to integration in Bayesian statistics. Ann. Statist.16, 895–914 (1988).

    MATH  Google Scholar 

  10. Sloan, I. H., Kachoyan, P. J.: Lattice methods for multiple integration: theory, error analysis and examples. SIAM J. Numer. Anal.24, 116–128 (1987).

    Article  MATH  Google Scholar 

  11. Tuffin, B.: Variance reduction technique for a cellular system with dynamic resource sharing. In: Proceedings of the 10th European Simulation Multiconference, pp. 467–471. Budapest, 1996.

  12. Tuffin, B.: Simulation accélérée par les méthodes de Monte Carlo et quasi-Monte Carlo: théorie et applications. PhD thesis, Université de Rennes 1, 1997.

  13. Tuffin, B.: Variance reductions applied to product-form multi-class queuing network. ACM Trans. Model. Comput. Simul.7, 478–500 (1997).

    Article  MATH  Google Scholar 

  14. Zaremba, S. K.: Some applications of multidimensional integration by parts. Ann. Pol. Math.21, 85–96 (1968).

    MATH  Google Scholar 

  15. Zinterhof, P.: Gratis lattice points for multidimensional integration. Computing38, 347–353 (1987).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuffin, B. Variance reduction order using good lattice points in monte carlo methods. Computing 61, 371–378 (1998). https://doi.org/10.1007/BF02684386

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684386

AMS Subject Classifications

Key words