Skip to main content
Log in

Comparison of direct to shooting enclosures for an inverse-monotone boundary value problem with locally steep solution

  • Published:
Computing Aims and scope Submit manuscript

Abstract

For an inverse-monotone boundary value problem with the nonlinear ODE –ɛu" + sinh(u)=1,ɛ>0, u(0)=u(1)=0, applications of the following enclosure methods are presented and discussed:

  1. (i)

    on the basis of a piecewise replacement of sinh(u) by polynomials, the construction of monotone sequences of upper and lower bounds foru;

  2. (ii)

    on the basis of Lohner’s enclosure algorithms for solutions of ODEs, simple and multiple shooting methods.

Existence of a classical solution follows from literature and (independently) from the execution of (ii). Whereas (i) requires the inverse-monotonicity of the problem, this is not so for (ii). For small ε, the unique solution of the BVP is strongly repellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.: Periodic solutions: enclosure, verification, and applications. In: Computer arithmetic and self-validating numerical methods (Ulrich, Ch., ed.), pp. 199–245. Boston: Academic Press 1990.

    Google Scholar 

  2. Adams, E., Ansorge, R., Grossmann, C., Roos, H.-G. (eds.): Discretization in differential equations and enclosures. Berlin: Akademie Verlag 1987.

    MATH  Google Scholar 

  3. Adams, E., Holzmüller, A., Straub, D.: The periodic solutions of the Oregonator and verification of results. In: Scientific computation with automatic result verifications (Kulisch, U., Stetter, H.J, eds.), pp. 111–121. Wien New York: Springer 1988 (Computing Suppl. 6).

    Google Scholar 

  4. Adams, E., Spreuer, H.: Konvergente numerische Schrankenkonstruktionen mit Spline-Funktionen für nichtlineare gewöhnliche bzw. parabolische Randwertaufgaben. In: Interval mathematics (Nickel, K., ed.), pp. 118–126. Berlin Heidelberg, New York: Springer 1975.

    Google Scholar 

  5. Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Springer 1983.

    MATH  Google Scholar 

  6. Al-Zanaidi, M., Grossmann, C.: Monotone iteration discretization algorithm for BVP’s. Computing31, 59–74 (1989).

    Article  Google Scholar 

  7. Ascher, U.: On numerical differential algebraic problems with applications to semiconductor device simulation. SIAM J. Numer. Anal.26, 517–538 (1989).

    Article  MATH  Google Scholar 

  8. Ascher, U., Mattheij, R. M., Russel, R. D.: Numerical solution of boundary value problems for ordinary differential equations. Englewood Cliffs: Prentice Hall 1988.

    MATH  Google Scholar 

  9. Ascher, U., Weiss, R.: Collocation for singular perturbation problems III: Nonlinear problems without turning points. SIAM J. Sci. Statist. Comput.5, 811–829 (1984).

    Article  MATH  Google Scholar 

  10. Baumann, K.: Einschließungsmethoden für zwei Klassen von Differentialgleichungen aus dem Ingenieurwesen. Diplomarbeit, Karlsruhe 1993.

    Google Scholar 

  11. DeBoor, C.: A practical guide to splines. Berlin Heidelberg New York: Springer 1978.

    Google Scholar 

  12. Eijgenraam, P.: The solution of initial value problems using interval arithmetic. Stichting Mathematisch Centrum Amsterdam, Mathematical Centre Tracts 144, 1981.

  13. Grossmann, C.: Monotone discretization of two-point bounday value problems and related numerical methods. In: [2], pp. 99–122.

    Google Scholar 

  14. Grossmann, C., Krätzschmar, M., Roos, H.-G.: Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben. Numer. Math.49, 95–110 (1986).

    Article  MATH  Google Scholar 

  15. Grossmann, C., Roos, H.-G.: Enclosing discretization for singular and singularly perturbed boundary value problems. In: Numerical methods in singularly perturbed problems, (Roos, H.G., et al., eds), pp. 71–82. TU Dresden 1991.

  16. Hairer, E., Norsett, S. P., Wanner, G.: Solving ordinary differential equations I: Nonstiff problems. Berlin Heidelberg New York Tokyo: Springer 1987.

    MATH  Google Scholar 

  17. Hammer, R., et al.: Numerical toolbox for verified computing I, theory, algorithms and PASCAL-XSC programs. Berlin Heidelberg New York Tokyo: Springer 1991.

    Google Scholar 

  18. Hemker, P.W.: A numerical study of stiff two-point boundary value problems. Ph.D. Thesis, Amsterdam 1977.

  19. Jordan, D. W., Smith, P.: Nonlinear ordinary differential equations. Oxford: Clarendon Press 1977.

    MATH  Google Scholar 

  20. Kadalbajoo, M. K., Bawa, R. K.: Cubic spline method for a class of nonlinear singularly-perturbed boundary-value problems. J. Optim. Theory Appl.76, 415–428 (1993).

    Article  MATH  Google Scholar 

  21. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. New York: Academic Press 1980.

    MATH  Google Scholar 

  22. Klatte, R., et al.: PASCAL-XSC Sprachbeschreibung mit Beispielen. Berlin Heidelberg New York: Tokyo Springer 1991; [English translation: Springer, 1992].

    MATH  Google Scholar 

  23. Krätzschmar, M.: Iterationsverfahren zur Lösung schwach nichtlinearer elliptischer Randwertaufgaben mit monotoner Lösungseinschließung. Ph.D. Thesis, Dresden 1983.

  24. Kulisch, U., Miranker, W. L.: Computer arithmetic in theory and practice. New York: Academic Press 1981.

    MATH  Google Scholar 

  25. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. Diss., Univ. Karlsruhe, 1988.

  26. Lohner, R. et al.: Numerical toolbox for verified computing II/III, theory, algorithms and PASCAL-XSC programs. Heidelberg New York Tokyo: Springer 1990.

    Google Scholar 

  27. O’Malley, R. E.: Singular perturbation methods for ordinary differential equations. Applied Mathematical Sciences, vol. 89. New York: Springer 1991.

    Google Scholar 

  28. Plum, M.: Computer-aided existence proofs for two-point boundary value problems. Computing46, 19–34 (1991).

    Article  MATH  Google Scholar 

  29. Roos, H. G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations. Berlin Heidelberg New York Tokyo: Springer 1996.

    MATH  Google Scholar 

  30. Schröder, J.: Operator inequalities. New York: Academic Press 1980.

    MATH  Google Scholar 

  31. Schröder, J.: Operator inequalities and applications. In: Inequalities (Norrie, E.W., ed.), pp. 163–210. New York: Marcel Dekker 1991.

    Google Scholar 

  32. Selberherr, S.: Analysis and simulation of semiconductor devices. Heidelberg New York: Springer 1984.

    Google Scholar 

  33. Sprekels, J., Voss, H.: Pointwise inclusions of fixed points by finite dimensional iteration schemes. Numer. Math.32, 381–392 (1979).

    Article  MATH  Google Scholar 

  34. Spreuer, H.: A method for the computation of bounds with convergence of arbitrary order for ordinary linear boundary value problems. JMAA81, 99–133 (1981).

    MATH  Google Scholar 

  35. Stoer, J., Bulirsch, R.: Einführung in die numerische Mathematik, II. Berlin Heidelberg New York: Springer 1973.

    MATH  Google Scholar 

  36. Walter, W.: Differential and integral inequalities. Berlin Heidelberg New York: Springer 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor William F. Ames on the occasion of his 70th birthday

Supported by grant SM 093 of Kuwait University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, E., Baumann, K. & Grossmann, C. Comparison of direct to shooting enclosures for an inverse-monotone boundary value problem with locally steep solution. Computing 59, 63–83 (1997). https://doi.org/10.1007/BF02684404

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684404

AMS Subject Classifications

Kew words

Navigation