Abstract
We present a multilevel approach for the solution of partial differential equations. It is based on a multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product approach. Together with the use of hash tables as data structure, this allows in a simple way for adaptive refinement and is, due to the tensor product approach, well suited for higher dimensional problems. Also, the adaptive treatment of partial differential equations, the discretization (involving finite differences) and the solution (here by preconditioned BiCG) can be programmed easily. We describe the basic features of the method, discuss the discretization, the solution and the refinement procedures and report on the results of different numerical experiments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arandiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function: linear reconstruction. CAM Report 96–25, Dept. of Mathematics, UCLA, 1996.
Babenko, K. I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Dokl. Akad. Nauk SSSR, 132, 982–985, (Russian); 672–765 (English translation), 1960.
Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichungen auf dünnen Gittern. Dissertation, TU München, 1994.
Bank, R.E., Dupont, T. F.: An optimal order process for solving elliptic finite element equations. Math. Comp.36, 967–975 (1981).
Bastian, P.: Parallelle adaptive Mehrgitterverfahren. Stuttgart: B.G. Teubner 1996.
Baszenski, G., Delvos, F. J., Jester, S.: Blending approximation with sine functions. In: Numerical methods of approximation 9 (Braess, B., Schumaker, L. L., eds.). Int. Ser. Num. Math.105, 1–19 (1992).
Bramble, J., Pasciak, J. P., Xu, J.: Parallel multilevel preconditioners. Math. Comp.31, 333–390 (1990).
Brandt, A.: Guide to multigrid development. In: Multigrid methods (Hackbusch, W., Trottenberg, U., eds.). Lecture Notes in Mathematics 960. Berlin, Heidelberg, New York: Springer, 1982.
Bungartz, H. J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, TU München, 1992.
Bungartz, H. J., Dornseiffer, T.: Sparse grids: Recent developments for elliptic partial differential equations. Rep. TUM-I9702, Institut für Informatik, TU München, 1997, submitted to Proc 5th Europ. Conf. on Multigrid Methods, Stuttgart, 1996.
Bungartz, H., Griebel, M.: A note on the complexity of the Poisson equation and related elliptic equations for spaces of bounded mixed derivative. Report SFB256 No 524, University of Bonn, 1997, submitted to J. Complexity.
Dahlke, S.: Besov regularity for Dirichlet problems for divergence form operators in Lipschitz domains. Report 138, Institut für Geometrie und Praktische Mathematik, RWTH-Aachen, 1997.
Delvos, F. J.: d-Variate Boolean Interpolation, J. Approx. Theory34, 99–114 (1982).
Faber, G.: Über stetige Funktionen. Math. Anal.66, 81–94 (1909).
Gordon, W. J.: Distributive lattices and the approximation of multivariate functions. In: Approximation with special emphasis on spline functions (Schoenberg, I. J., ed.), pp. 223–277. New York: Academic Press, 1969.
Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Parallel algorithms for partial differential equations. Proceedings of the Sixth GAMM-Seminar (Hackbusch, W., ed.), pp. 94–199. Braunschweig: Vieweg 1991. (Notes on Numerical Fluid Mechanics Vol. 31).
Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. Stuttgart: Teubner 1994.
Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretization. Numer. Math.66, 449–464 (1994).
Griebel, M., Oswald, P.: Tensor-product-type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math.4, 171–206 (1995).
Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: iterative methods in linear algebra. (De Groen, P., Beauwens, R., eds.), pp. 263–281. North-Holland: Elsevier, 1992.
Griebel, M., Zimmer, S., Zenger, C.: Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing49, 127–148 (1993).
Griebel, M., Zumbusch, G.: Hash-storage techniques for adaptive multilevel solvers and their domain decomposition parallelization. Proceedings of the Tenth International Conference on Domain Decomposition Methods Boulder, Colorado, USA, August 10–14, 1997.
Griebel, M., Zumbusch, G.: Parallel multigrid in an adaptive PDE solver based on hashing. Proceedings ParCo’97, Bonn, September 1997.
Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher Mathematik. Stuttgart: Teubner 1986.
Hackbusch, W.: Multigrid methods and applications. Berlin, Heidelberg, New York: Springer 1985.
Harten, A.: Multiresolution representation and numerical algorithms: A brief review. NASA ICASE report No 94-59, 1994.
Hemker, P., Pflaum, C.: Approximation on partially ordered sets of regular grids. Appl. Num. Anal.25, 55–87 (1997).
Hemker, P., de Zeeuw, P.: BASIS3: A data structure for 3-dimensional sparse grids. Technical Report NM-R9321, CWI Amsterdam, The Netherlands, 1993.
Hennart, J. P., Mund, E. M.: On the h- and p-versions of the extrapolated Gordon’s projector with applications to elliptic equations. SIAM J. Sci. Stat. Comput.9, 773–791 (1988).
Holschneider, M.: Localization properties of wavelet transforms. J. Math. Phys.34, 3227–3244 (1993).
Holschneider, M., Tchamitchian, P.: Pointwise regularity of Riemann’s ‘nowhere differentiable’ function. Invent. Math.15, 157–175 (1991).
Knuth, D. E.: The art of computer programming, vol 3, chapter 6.4. Reading: Addison-Wesley, 1975.
Mitchell, W. F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Software15, 326–347 (1989).
Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-NFS Regional Conference Series in Applied Mathematics, 63. Philadelphia: SIAM, 1992.
Oswald, P.: Multilevel finite element approximation: theory and applications. Teubner Skripten zur Numerik. Stuttgart: Teubner 1994.
Plauger, P. J., Stepanov, A., Lee, M., Musser, D.: The standard template library. Englewood Cliffs: Prentice-Hall, 1996.
Rivara, M. C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Methods Eng.20, 745–756 (1984).
Schiekofer, T.: Die Methode der Finiten Differenzen auf Dünnen Gittern zur adaptiven Multilevel-Lösung partieller Differentialgleichungen, Dissertation Universität Bonn. Institut für Angewandte Mathematik, 1998.
Smolyak, S. A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR,148, 1042–1045 (in Russian), 240–243 (English translation), 1963.
Wasilkowsi, G. W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product probems. J. Complex.11, 1–56 (1995).
Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.49, 379–412 (1986).
Yserentant, H.: Hierarchical bases. In: Proc. ICIAM91, Washington (O’Malley, R. E., et al., eds.). Philadelphia: SIAM, 1992.
Zenger, C.: Sparse grids. In: Parallel algorithms for partial differential equations. Proceedings of the Sixth GAMM-Seminar, Kiel, 1990 (Hackbusch, W., e d.), pp. 241–251. Notes on Numerical Fluid Mechanics, Vol. 31. Braunschweig: Vieweg, 1991.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Griebel, M. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61, 151–179 (1998). https://doi.org/10.1007/BF02684411
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684411