Skip to main content

Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a multilevel approach for the solution of partial differential equations. It is based on a multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product approach. Together with the use of hash tables as data structure, this allows in a simple way for adaptive refinement and is, due to the tensor product approach, well suited for higher dimensional problems. Also, the adaptive treatment of partial differential equations, the discretization (involving finite differences) and the solution (here by preconditioned BiCG) can be programmed easily. We describe the basic features of the method, discuss the discretization, the solution and the refinement procedures and report on the results of different numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arandiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function: linear reconstruction. CAM Report 96–25, Dept. of Mathematics, UCLA, 1996.

  2. Babenko, K. I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Dokl. Akad. Nauk SSSR, 132, 982–985, (Russian); 672–765 (English translation), 1960.

    Google Scholar 

  3. Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichungen auf dünnen Gittern. Dissertation, TU München, 1994.

    Google Scholar 

  4. Bank, R.E., Dupont, T. F.: An optimal order process for solving elliptic finite element equations. Math. Comp.36, 967–975 (1981).

    Article  Google Scholar 

  5. Bastian, P.: Parallelle adaptive Mehrgitterverfahren. Stuttgart: B.G. Teubner 1996.

    Google Scholar 

  6. Baszenski, G., Delvos, F. J., Jester, S.: Blending approximation with sine functions. In: Numerical methods of approximation 9 (Braess, B., Schumaker, L. L., eds.). Int. Ser. Num. Math.105, 1–19 (1992).

    Google Scholar 

  7. Bramble, J., Pasciak, J. P., Xu, J.: Parallel multilevel preconditioners. Math. Comp.31, 333–390 (1990).

    Google Scholar 

  8. Brandt, A.: Guide to multigrid development. In: Multigrid methods (Hackbusch, W., Trottenberg, U., eds.). Lecture Notes in Mathematics 960. Berlin, Heidelberg, New York: Springer, 1982.

    Chapter  Google Scholar 

  9. Bungartz, H. J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, TU München, 1992.

    Google Scholar 

  10. Bungartz, H. J., Dornseiffer, T.: Sparse grids: Recent developments for elliptic partial differential equations. Rep. TUM-I9702, Institut für Informatik, TU München, 1997, submitted to Proc 5th Europ. Conf. on Multigrid Methods, Stuttgart, 1996.

    Google Scholar 

  11. Bungartz, H., Griebel, M.: A note on the complexity of the Poisson equation and related elliptic equations for spaces of bounded mixed derivative. Report SFB256 No 524, University of Bonn, 1997, submitted to J. Complexity.

  12. Dahlke, S.: Besov regularity for Dirichlet problems for divergence form operators in Lipschitz domains. Report 138, Institut für Geometrie und Praktische Mathematik, RWTH-Aachen, 1997.

  13. Delvos, F. J.: d-Variate Boolean Interpolation, J. Approx. Theory34, 99–114 (1982).

    Article  MATH  Google Scholar 

  14. Faber, G.: Über stetige Funktionen. Math. Anal.66, 81–94 (1909).

    Article  Google Scholar 

  15. Gordon, W. J.: Distributive lattices and the approximation of multivariate functions. In: Approximation with special emphasis on spline functions (Schoenberg, I. J., ed.), pp. 223–277. New York: Academic Press, 1969.

    Google Scholar 

  16. Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Parallel algorithms for partial differential equations. Proceedings of the Sixth GAMM-Seminar (Hackbusch, W., ed.), pp. 94–199. Braunschweig: Vieweg 1991. (Notes on Numerical Fluid Mechanics Vol. 31).

    Google Scholar 

  17. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. Stuttgart: Teubner 1994.

    Google Scholar 

  18. Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretization. Numer. Math.66, 449–464 (1994).

    Article  MATH  Google Scholar 

  19. Griebel, M., Oswald, P.: Tensor-product-type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math.4, 171–206 (1995).

    Article  MATH  Google Scholar 

  20. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: iterative methods in linear algebra. (De Groen, P., Beauwens, R., eds.), pp. 263–281. North-Holland: Elsevier, 1992.

    Google Scholar 

  21. Griebel, M., Zimmer, S., Zenger, C.: Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing49, 127–148 (1993).

    Article  Google Scholar 

  22. Griebel, M., Zumbusch, G.: Hash-storage techniques for adaptive multilevel solvers and their domain decomposition parallelization. Proceedings of the Tenth International Conference on Domain Decomposition Methods Boulder, Colorado, USA, August 10–14, 1997.

  23. Griebel, M., Zumbusch, G.: Parallel multigrid in an adaptive PDE solver based on hashing. Proceedings ParCo’97, Bonn, September 1997.

  24. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher Mathematik. Stuttgart: Teubner 1986.

    Google Scholar 

  25. Hackbusch, W.: Multigrid methods and applications. Berlin, Heidelberg, New York: Springer 1985.

    Google Scholar 

  26. Harten, A.: Multiresolution representation and numerical algorithms: A brief review. NASA ICASE report No 94-59, 1994.

  27. Hemker, P., Pflaum, C.: Approximation on partially ordered sets of regular grids. Appl. Num. Anal.25, 55–87 (1997).

    Article  MATH  Google Scholar 

  28. Hemker, P., de Zeeuw, P.: BASIS3: A data structure for 3-dimensional sparse grids. Technical Report NM-R9321, CWI Amsterdam, The Netherlands, 1993.

  29. Hennart, J. P., Mund, E. M.: On the h- and p-versions of the extrapolated Gordon’s projector with applications to elliptic equations. SIAM J. Sci. Stat. Comput.9, 773–791 (1988).

    Article  MATH  Google Scholar 

  30. Holschneider, M.: Localization properties of wavelet transforms. J. Math. Phys.34, 3227–3244 (1993).

    Article  MATH  Google Scholar 

  31. Holschneider, M., Tchamitchian, P.: Pointwise regularity of Riemann’s ‘nowhere differentiable’ function. Invent. Math.15, 157–175 (1991).

    Article  Google Scholar 

  32. Knuth, D. E.: The art of computer programming, vol 3, chapter 6.4. Reading: Addison-Wesley, 1975.

    Google Scholar 

  33. Mitchell, W. F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Software15, 326–347 (1989).

    Article  MATH  Google Scholar 

  34. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-NFS Regional Conference Series in Applied Mathematics, 63. Philadelphia: SIAM, 1992.

    MATH  Google Scholar 

  35. Oswald, P.: Multilevel finite element approximation: theory and applications. Teubner Skripten zur Numerik. Stuttgart: Teubner 1994.

    Google Scholar 

  36. Plauger, P. J., Stepanov, A., Lee, M., Musser, D.: The standard template library. Englewood Cliffs: Prentice-Hall, 1996.

    Google Scholar 

  37. Rivara, M. C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Methods Eng.20, 745–756 (1984).

    Article  MATH  Google Scholar 

  38. Schiekofer, T.: Die Methode der Finiten Differenzen auf Dünnen Gittern zur adaptiven Multilevel-Lösung partieller Differentialgleichungen, Dissertation Universität Bonn. Institut für Angewandte Mathematik, 1998.

  39. Smolyak, S. A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR,148, 1042–1045 (in Russian), 240–243 (English translation), 1963.

    MATH  Google Scholar 

  40. Wasilkowsi, G. W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product probems. J. Complex.11, 1–56 (1995).

    Article  Google Scholar 

  41. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.49, 379–412 (1986).

    Article  MATH  Google Scholar 

  42. Yserentant, H.: Hierarchical bases. In: Proc. ICIAM91, Washington (O’Malley, R. E., et al., eds.). Philadelphia: SIAM, 1992.

    Google Scholar 

  43. Zenger, C.: Sparse grids. In: Parallel algorithms for partial differential equations. Proceedings of the Sixth GAMM-Seminar, Kiel, 1990 (Hackbusch, W., e d.), pp. 241–251. Notes on Numerical Fluid Mechanics, Vol. 31. Braunschweig: Vieweg, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, M. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61, 151–179 (1998). https://doi.org/10.1007/BF02684411

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684411

AMS Subject Classifications

Key words