Skip to main content
Log in

A linear compound algorithm for uniform machine scheduling

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the classical two uniform machine scheduling problem. We present a compound algorithm which consists of three Greedy-like subprocedures running independently. We prove that the algorithm has a worst-case bound of 7/6 and runs in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Burkard, R. E., He, Y.: A note on multifit scheduling for uniform machines, SFB Report 116, 1997, Institut für Mathematik, TU Graz, Austria. Submitted for publication.

    Google Scholar 

  2. Friesen, D. K., Langston, M. A.: Analysis of a compound bin packing algorithm. SIAM J. Discr. Math.4, 61–79 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  3. Gonzalez, T., Ibarra, O. H., Sahni, S.: Bounds for LPT scheduling on uniform processors. SIAM J. Comput.6, 155–166 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  4. He, Y., Kellerer, H., Kotov, V.: Linear compound algorithms for the partitioning problem (submitted).

  5. Hochbaum, D. S., Shmoys, D. B.: A polynomial approximation scheme for scheduling on uniform processors. Using the dual approximation approach, SIAM J. Comput.17, 539–551 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM23, 317–327 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  7. Kohli, R., Krishnamurti, R.: Joint performance of greedy heuristic for the integer knapsack problem. Discr. Appl. Math.56, 37–48 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. Kovalev, M. M., Kotov, V. M.: Evaluation of gradient algorithms for knapsack and travelling salesman problems. Report CORR 91-04, University of Waterloo, 1991.

  9. Lai, T.-C.: Worst-case analysis of greedy algorithms for the unbounded knapsack, subset-sum and partition problems, Oper, Res. Lett.14, 215–220 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  10. Mireault, P., Orlin, J. B., Vohra, R. V.: A parametric worst case analysis of the LPT heuristic for two uniform machines, Oper. Res.45, 116–125 (1997).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by SFB F003 “Optimierung und Kontrolle”, Projektbereich Diskrete Optimierung and by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkard, R.E., He, Y. & Kellerer, H. A linear compound algorithm for uniform machine scheduling. Computing 61, 1–9 (1998). https://doi.org/10.1007/BF02684446

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684446

AMS Subject Classifications

Key words

Navigation