Skip to main content

Rigorously computed orbits of dynamical systems without the wrapping effect

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A new method for rigorously computing orbits of discrete dynamical systems is introduced. High order zonotope enclosures of the orbit are computed, using only matrix algebra. The wrapping effect can be made arbitrarily small by choosing the order high enough. The method is easy to implement and especially suited for parallel computing. It is compared to other well known strategies, and several examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. BarbĂroşie, C.: Reducing the wrapping effect. Computing54, 347–357 (1995).

    Article  Google Scholar 

  2. Corliss, G. F.: Survey of interval algorithms for ordinary differential equations. Appl. Math. Comput.31, 112–120 (1989).

    Article  Google Scholar 

  3. Corliss, G. F.: Guaranteed error bounds for ordinary differential equations. VI-th SERC Numerical Analysis Summer School, Leicester University, 1994. Available at ftp://interval.usl.edu/pub/interval_math/bibliographies/surv_ode.bib.

  4. Davey, D. P., Stewart, N. F.: Guaranteed error bounds for the initial value problem using polytope arithmetic. BIT16, 257–268 (1976).

    Article  MATH  Google Scholar 

  5. Gambill, T. N., Skeel, R. D.: Logarithmic reduction of the wrapping effect with application to ordinary differential equations. SIAM J. Numer. Anal.25, 153–162 (1988).

    Article  MATH  Google Scholar 

  6. Guderley, K. G., Keller, C. L.: A basic theorem in the computation of ellipsoidal error bounds. Numer. Math.19, 218–229 (1972).

    Article  MATH  Google Scholar 

  7. Jackson, L. W.: Interval arithmetic error-bounding algorithms. SIAM J. Numer. Anal.12, 223–238 (1975).

    Article  MATH  Google Scholar 

  8. Kuhn, W.: Rigorous and reasonable error bounds for the numerical solution of dynamical systems. PhD thesis, Georgia Institute of Technology, Atlanta, 1997.

    Google Scholar 

  9. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. PhD thesis, University of Karlsruhe, 1988. Dissertation.

  10. Moore, R. E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

    MATH  Google Scholar 

  11. Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, 1990.

  12. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. Computing [Suppl]9, 175–190 (1993).

    Google Scholar 

  13. Nickel, K. L. E.: Using interval methods for the numerical solution of ODEs. Z. Angew. Math. Mech.66, 513–523 (1986).

    Article  MATH  Google Scholar 

  14. Rihm, R.: Interval methods for initial value problems in ODEs. In: Topics in validated computations (Herzberger, J., ed.). New York: Elsevier Science B.V., 1994.

    Google Scholar 

  15. Schneider, R., Weil, W.: Zonoids and related topics. In: Convexity and its Applications (Gruber, P. M., Wills, J. M., eds.), pp. 296–317. Basel: Birkhauser, 1986.

    Google Scholar 

  16. Ziegler, G. M.: Lectures on polytopes. Berlin Heidelberg, New York Tokyo, Springer, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, W. Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61, 47–67 (1998). https://doi.org/10.1007/BF02684450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684450

AMS Subject Classifications

Key words