Abstract
We consider ROW-methods for stiff initial value problems, where the stage equations are solved by Krylov techniques. By using a certain ‘multiple Arnoldi process’ over all stages the order of the fully-implicit one-step scheme can be preserved with low Krylov dimensions. Explicit estimates for minimal order preserving dimensions are derived. They depend on the parameters of the method only, not on the dimension of the ODE. Stability restrictions usually require larger dimensions, of course, but this can be done adaptively. These results justify to adopt the step size control of the underlying ROW-method. The widely used ROW-methods of order 4 are discussed in detail and numerical illustrations are given. For the special class of semilinear systems with stiffness in a constant linear part we establish the order 2 of B-consistency for these Krylov-W-methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Botchev, M., Sleijpen, G., van der Vorst, H.: Low-dimensional Krylov subspace iterations for enhancing stability of time-step integration schemes. Preprint nr. 1004, University of Utrecht, 1997.
Brown, P. N., Hindmarsh, A. C.: Matrix-free methods for stiff systems of ODEs. SIAM J. Numer. Anal.23, 610–638 (1986).
Büttner, M., Schmitt, B. A., Weiner, R.: Automatic partitioning in linearly-implicit Runge-Kutta methods. Appl. Numer. Math.13, 41–55 (1993).
Büttner, M., Schmitt, B. A., Weiner, R.: W-methods with automatic partitioning by Krylov techniques for large stiff systems. SIAM J. Numer. Anal.32, 260–284 (1995).
Byrne, G. D.: Pragmatic experiments with Krylov methods in the stiff ODE settings, pp. 323–356. Computational ordinary differential equations. Oxford: Clarendon Press, 1992.
Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comp.13, 1236–1264 (1992).
Gear, C. W., Saad, Y.: Iterative solution of linear equations in ODE codes. SIAM J. Sci. Stat. Comp.4, 583–601 (1983).
Hairer, E., Bader, G., Lubich, Ch.: On the stability of semi-implicit methods for ordinary differential equations. BIT22, 211–232 (1982).
Hairer, E., Wanner, G.: Solving ordinary differential equations II. Berlin Heidelberg New York Tokyo: Springer 1991.
Hochbruck, M., Lubich, Ch.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal.34, 1911–1925 (1997).
Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. to appear in SIAM J. Sci. Comp.
Kaps, P., Poon, S., Bui, T. D.: Rosenbrock methods for stiff ODEs. A comparison of Richardson extrapolation and embedding technique. Computing34, 17–40 (1985).
Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math.38, 55–68 (1979).
Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp.37, 105–126 (1981).
Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal.29, 209–228 (1992).
Schmitt, B. A., Weiner, R.: Matrix-free W-methods using a multiple Arnoldi iteration. APNUM18, 307–320 (1995).
Schmitt, B. A., Weiner, R.: Equilibrium attractivity of Krylov-W-methods for nonlinear stiff ODEs. BIT38, 391–414 (1998).
Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff ordinary differential equations. Math. Comp.33, 521–535 (1979).
Strehmel, K., Weiner, R.: Linear-implizite Runge-Kutta Methoden und ihre Anwendung. Stuttgart-Leipzig, Teubner-Verlag 1992.
Strehmel, K., Weiner, R., Büttner, M.: Order results for Rosenbrock type methods on classes of stiff equations. Numer. Math.59, 723–737 (1991).
Weiner, R., Schmitt, B. A.: Consistency of Krylov-W-methods in initial value problems. Report 14, FB Mathematik und Informatik, Universität Halle, 1995.
Weiner, R., Schmitt, B. A., Podhaisky, H.: ROWMAP — a ROW-code with Krylov techniques for large stiff ODEs. APNUM25, 303–319 (1997).
Author information
Authors and Affiliations
Additional information
This work was supported by the Deutsche Forschungsgemeinschaft.
Rights and permissions
About this article
Cite this article
Weiner, R., Schmitt, B.A. Order results for Krylov-W-methods. Computing 61, 69–89 (1998). https://doi.org/10.1007/BF02684451
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684451