Skip to main content
Log in

Order results for Krylov-W-methods

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider ROW-methods for stiff initial value problems, where the stage equations are solved by Krylov techniques. By using a certain ‘multiple Arnoldi process’ over all stages the order of the fully-implicit one-step scheme can be preserved with low Krylov dimensions. Explicit estimates for minimal order preserving dimensions are derived. They depend on the parameters of the method only, not on the dimension of the ODE. Stability restrictions usually require larger dimensions, of course, but this can be done adaptively. These results justify to adopt the step size control of the underlying ROW-method. The widely used ROW-methods of order 4 are discussed in detail and numerical illustrations are given. For the special class of semilinear systems with stiffness in a constant linear part we establish the order 2 of B-consistency for these Krylov-W-methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botchev, M., Sleijpen, G., van der Vorst, H.: Low-dimensional Krylov subspace iterations for enhancing stability of time-step integration schemes. Preprint nr. 1004, University of Utrecht, 1997.

  2. Brown, P. N., Hindmarsh, A. C.: Matrix-free methods for stiff systems of ODEs. SIAM J. Numer. Anal.23, 610–638 (1986).

    Article  MATH  Google Scholar 

  3. Büttner, M., Schmitt, B. A., Weiner, R.: Automatic partitioning in linearly-implicit Runge-Kutta methods. Appl. Numer. Math.13, 41–55 (1993).

    Article  MATH  Google Scholar 

  4. Büttner, M., Schmitt, B. A., Weiner, R.: W-methods with automatic partitioning by Krylov techniques for large stiff systems. SIAM J. Numer. Anal.32, 260–284 (1995).

    Article  MATH  Google Scholar 

  5. Byrne, G. D.: Pragmatic experiments with Krylov methods in the stiff ODE settings, pp. 323–356. Computational ordinary differential equations. Oxford: Clarendon Press, 1992.

    Google Scholar 

  6. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comp.13, 1236–1264 (1992).

    Article  MATH  Google Scholar 

  7. Gear, C. W., Saad, Y.: Iterative solution of linear equations in ODE codes. SIAM J. Sci. Stat. Comp.4, 583–601 (1983).

    Article  MATH  Google Scholar 

  8. Hairer, E., Bader, G., Lubich, Ch.: On the stability of semi-implicit methods for ordinary differential equations. BIT22, 211–232 (1982).

    Article  MATH  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Berlin Heidelberg New York Tokyo: Springer 1991.

    MATH  Google Scholar 

  10. Hochbruck, M., Lubich, Ch.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal.34, 1911–1925 (1997).

    Article  MATH  Google Scholar 

  11. Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. to appear in SIAM J. Sci. Comp.

  12. Kaps, P., Poon, S., Bui, T. D.: Rosenbrock methods for stiff ODEs. A comparison of Richardson extrapolation and embedding technique. Computing34, 17–40 (1985).

    Article  MATH  Google Scholar 

  13. Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math.38, 55–68 (1979).

    Article  Google Scholar 

  14. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp.37, 105–126 (1981).

    Article  MATH  Google Scholar 

  15. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal.29, 209–228 (1992).

    Article  MATH  Google Scholar 

  16. Schmitt, B. A., Weiner, R.: Matrix-free W-methods using a multiple Arnoldi iteration. APNUM18, 307–320 (1995).

    MATH  Google Scholar 

  17. Schmitt, B. A., Weiner, R.: Equilibrium attractivity of Krylov-W-methods for nonlinear stiff ODEs. BIT38, 391–414 (1998).

    Article  MATH  Google Scholar 

  18. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff ordinary differential equations. Math. Comp.33, 521–535 (1979).

    Article  MATH  Google Scholar 

  19. Strehmel, K., Weiner, R.: Linear-implizite Runge-Kutta Methoden und ihre Anwendung. Stuttgart-Leipzig, Teubner-Verlag 1992.

    MATH  Google Scholar 

  20. Strehmel, K., Weiner, R., Büttner, M.: Order results for Rosenbrock type methods on classes of stiff equations. Numer. Math.59, 723–737 (1991).

    Article  MATH  Google Scholar 

  21. Weiner, R., Schmitt, B. A.: Consistency of Krylov-W-methods in initial value problems. Report 14, FB Mathematik und Informatik, Universität Halle, 1995.

  22. Weiner, R., Schmitt, B. A., Podhaisky, H.: ROWMAP — a ROW-code with Krylov techniques for large stiff ODEs. APNUM25, 303–319 (1997).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, R., Schmitt, B.A. Order results for Krylov-W-methods. Computing 61, 69–89 (1998). https://doi.org/10.1007/BF02684451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684451

AMS Subject Classifications

Key words

Navigation