Skip to main content
Log in

Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics

  • Scientific Papers
  • Published:
Science in China Series : Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of output feedback stabilization for stochastic nonlinear systems. We consider a class of stochastic nonlinear systems in observer canonical form with stable zero-dynamics. We introduce a sequence of state transformations that transform the system into a lower triangular structure that is amenable for integrator backstepping design. Then we design the output-feedback controller and prove that the closed-loop system is bounded in probability. Furthermore, when the disturbance vector field vanishes at the origin, the closed-loop system is asymptotically stable in the large. With special care, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isidori, A., Nonlinear Control Systems, 3rd ed., London: Springer-Verlag, 1995.

    MATH  Google Scholar 

  2. Kanellakopoulos, I., Kokotovic, P. V., More, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transaction on Automatic Control, 1991, 36: 1241–1253.

    Article  MATH  Google Scholar 

  3. Krstic, M., Kanellakopoulos, I., Kokotovic, P. V., Nonlinear design of adaptive controllers for linear systems, IEEE Transaction on Automatic Control, April 1994, 39: 738–752.

    Article  MATH  MathSciNet  Google Scholar 

  4. Seto, D., Annaswamy, A. M., Baillieul, J., Adaptive control of nonlinear systems with triangular structure, IEEE Transaction on Automatic Control, 1994, 39: 1411–1428.

    Article  MATH  MathSciNet  Google Scholar 

  5. Jain, S., Khorrami, F., Application of a decentralized adaptive output feedback based on backstepping to power systems, in Proceedings of the 34th IEEE Conference on Decision and Control (New Orleans, LA), IEEE Control System Society, 1995, 1585–1590.

  6. Jiang, Z. P., Pomet, J. B., Backstepping-based adaptive controllers for uncertain nonholonomic systems, in Proceedings of the 34th IEEE Conference on Decision and Control (New Orleans, LA), IEEE Control Systems Society, 1995, 1573–1578.

  7. Pan Zigang, Basar, T., Adaptive controller design for tracking and disturbance attenuation in parametric-feedback nonlinear systems, IEEE Transaction on Automatic Control, August 1998, 43: 1066–1083.

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, Z. P., Nijmeijer, H., A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transaction Automatic Control, February 1999, 44: 265–279.

    Article  MATH  MathSciNet  Google Scholar 

  9. Ezal, K., Pan Zigang, Kokotovic, P. V., Locally optimal backstepping design, IEEE Transaction on Automatic Control, 2000, 45: 260–271.

    Article  MATH  MathSciNet  Google Scholar 

  10. Krstic, M., Kanellakopouls, I., Kokotovic, P. V., Nonlinear and Adaptive Control Design, New York: Wiley, 1995.

    Google Scholar 

  11. Florchinger, P., Lyapunov-like techniques for stochastic stability, SIAM J. Control & Optimization, July 1995, 33: 1151–1169.

    Article  MATH  MathSciNet  Google Scholar 

  12. Pan Zigang, Basar, T., Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM J. Control & Optimization, 1999, 37: 957–995.

    Article  MATH  MathSciNet  Google Scholar 

  13. Deng, H., Krstic, M., Output-feedback stochastic nonlinear stabilization, IEEE Transaction on Automatic Control, 1999, 44: 328–333.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kha’minskii, R. Z., Stochastic Stability of Differential Equations, Rockville, MD: S&N International Publishers, 1980.

    Google Scholar 

  15. Jacobson, D. H., Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games, IEEE Transaction on Automatic Control, 1973, 18: 167–172.

    Article  Google Scholar 

  16. James, M. R., Baras, J., Elliott, R. J., Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems, IEEE Transaction on Automatic Control, 1994, 39: 780–792.

    Article  MATH  MathSciNet  Google Scholar 

  17. Runolfsson, T., The equivalence between infinite horizon control of stochastic systems with exponential-of-integral performance index and stochastic differential games, IEEE Transaction on Automatic Control, 1994, 39: 1551–1563.

    Article  MATH  MathSciNet  Google Scholar 

  18. Whittle, P., Risk-Sensitive Optimal Control, Chichester, New York: Wiley, 1990.

    MATH  Google Scholar 

  19. Fleming, W. H., McEneaney, W. M., Risk-sensitive control on an infinite time horizon, SIAM J. Control & Optimization, 1995, 33: 1881–1915.

    Article  MATH  MathSciNet  Google Scholar 

  20. Nagai, H., Bellman equations of risk-sensitive control, SIAM J. Control & Optimization, 1996, 33: 74–101.

    Article  MathSciNet  Google Scholar 

  21. Kokotovic, P., Arcak, M., Constructive nonlinear control: a historical perspective, Automatica, 2001, 37(5): 99135.

    MathSciNet  Google Scholar 

  22. Freeman, R. A., Kokotovic, P. V., Robust nonlinear control design, State-space and Layapunov techniques, Boston: Birkhauser, 1995.

    Google Scholar 

  23. Gihman, R. A., Skorohod, A. V., Stochastic Differential Equations, New York: Springer-Verlag, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yungang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Liu, Y. & Shi, S. Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics. Sci China Ser F 44, 292–308 (2001). https://doi.org/10.1007/BF02714717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714717

Keywords

Navigation