Abstract
We propose an analytical bias correction for the maximum likelihood estimators of the \(\mathcal{G}_{I}^{0}\) distribution. This distribution is a very powerful tool for speckled imagery analysis, since it is capable of describing a wide range of target roughness. We compare the performance of the corrected estimators with the corresponding original version using Monte Carlo simulation. This second-order bias correction leads to estimators which are better from both the bias and mean square error criteria.




Similar content being viewed by others
References
Bustos, O. H., Lucini, M. M. & Frery, A. C. (2002), ‘M-estimators of roughness and scale for GAO-modelled SAR imagery’,EURASIP Journal on Applied Signal Processing 2002(1), 105–114.
Cordeiro, G. & Vasconcellos, K. (1999), ‘Second-order biases of the maximum likelihood estimates in von-Mises regression models’,Australian and New Zealand Journal of Statistics 41, 901–910.
Cox, D. R. & Snell, E. J. (1968), ‘A general definition of residuals (with discussion)’,Journal of the Royal Statistical Society B30, 248–275.
Cribari-Neto, F. & Vasconcellos, K. L. P. (2002), ‘Nearly unbiased maximum likelihood estimation for the beta distribution’,Journal of Statistical Computing and Simulation 72(2), 107–118.
Cribari-Neto, F., Frery, A. C. & Silva, M. F. (2002), ‘Improved estimation of clutter properties in speckled imagery’,Computational Statistics and Data Analysis 40(4), 801–824.
Doornik, J. A. (2001),Ox: an object-oriented matrix programming language, 4 edn, Timberlake Consultants & Oxford, London.
Firth, D. (1993), ‘Bias reduction of maximum likelihood estimates’,Biometrika 80, 27–38.
Freitas, C. C., Frery, A. C. & Correia, A. H. (in press), ‘The polarimetric G distribution for SAR data analysis’,Environmetrics.
Frery, A. C., Cribari-Neto, F. & Souza, M. O. (in press), ‘Analysis of minute features in speckled imagery with maximum likelihood estima-tion’,EURASIP Journal on Applied Signal Processing.
Frery, A. C., Müller, H.-J., Yanasse, C. C. F. & Sant’Anna, S. J. S. (1997a), ‘A model for extremely heterogeneous clutter’,IEEE Transactions on Geoscience and Remote Sensing 35(3), 648–659.
Frery, A. C., Sant’Anna, S. J. S., Mascarenhas, N. D. A. & Bustos, O. H. (1997b), ‘Robust inference techniques for speckle noise reduction in 1-look amplitude SAR images’,Applied Signal Processing 4, 61–76.
Goodman, J. W. (1976), ‘Some fundamental properties of speckle’,Journal of the Optical Society of America 66, 1145–1150.
Goodman, N. R. (1963), ‘Statistical analysis based on a certain complex Gaussian distribution (an introduction)’,Annals of Mathematical Statistics 34, 152–177.
Gradshteyn, I. S. & Ryzhik, I. M. (1980),Table of Integrals, Series and Products, Academic Press, New York.
Jørgensen, B. (1982),Statistical Properties of the Generalized Inverse Gaussian Distribution, Vol. 9 ofLecture Notes in Statistics, Springer-Verlag, New York.
Mejail, M. E., Frery, A. C., Jacobo-Berlles, J. & Bustos, O. H. (2001), ‘Ap-proximation of distributions for SAR images: proposal, evaluation and practical consequences’,Latin American Applied Research 31, 83–92.
Mejail, M. E., Jacobo-Berlles, J., Frery, A. C. & Bustos, O. H. (2000), ‘Parametric roughness estimation in amplitude SAR images under the multiplicative model’,Revista de Teledetección 13, 37–49.
Mejail, M. E., Jacobo-Berlles, J., Frery, A. C. & Bustos, O. H. (2003), ‘Clas-sification of SAR images using a general and tractable multiplicative model’,International Journal of Remote Sensing 24(18), 3565–3582.
Oliver, C. & Quegan, S. (1998),Understanding Synthetic Aperture Radar Images, Artech House, Boston.
Pike, M., Hill, A. & Smith, P. (1980), ‘Bias and efficiency in logistic analysis of stratified case-control studies’,International Journal of Epidemiology 9, 89–95.
Seshadri, V. (1993),The Inverse Gaussian Distribution: A Case Study in Exponential Families, Claredon Press, Oxford.
Young, D. & Bakir, S. (1987), ‘Bias correction for a generalized log-gamma regression model’,Technometrics 29, 183–191.
Acknowledgements
We gratefully acknowledge partial financial support from CNPq, Brazil.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Vasconcellos, K.L.P., Frery, A.C. & Silva, L.B. Improving estimation in speckled imagery. Computational Statistics 20, 503–519 (2005). https://doi.org/10.1007/BF02741311
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02741311