Skip to main content
Log in

Algorithms for manipulation of level sets of nonparametric density estimates

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

We present algorithms for finding the level set tree of a multivariate density estimate. That is, we find the separated components of level sets of the estimate for a series of levels, gather information on the separated components, such as volume and barycenter, and present the information together with the tree structure of the separated components. The algorithm proceeds by first building a binary tree which partitions the support of the density estimate, followed by bottom-up travels of this tree during which we join those parts of the level sets which touch each other. As a byproduct we present an algorithm for evaluating a kernel estimate on a large multidimensional grid. Since we find the barycenters of the separated components of the level sets also for high levels, our method finds the locations of local extremes of the estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baíllo, A., Cuesta-Albertos, J. A. and Cuevas, A. (2001), ‘Convergence rates in nonparametric estimation of level sets’,Statist. Probab. Lett. 53, 27–35.

    Article  MathSciNet  Google Scholar 

  • Baíllo, A., Cuevas, A. and Justel, A. (2000), ‘Set estimation and nonparametric detectio’,Canadian J. Statist. 28, 765–782.

    Article  MathSciNet  Google Scholar 

  • Breiman, L. (1996a), ‘Bagging predictors’,Machine Learning 24, 123–140.

    MATH  Google Scholar 

  • Breiman, L. (1996b), ‘Heuristics of instability and stabilization in model selection’,Ann. Statist. 24, 2350–2383.

    Article  MathSciNet  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R. and Stone, C. J. (1984),Classification and Regression Trees, Chapman & Hall, New York.

    MATH  Google Scholar 

  • Devroye, L. and Wise, G. L. (1980), ‘Detection of abnormal behavior vianonparametric estimation of the support’,SIAM J. Appl. Math. 38, 480–488.

    Article  MathSciNet  Google Scholar 

  • Fan, J. and Marron, J. S. (1994), ‘Fast implementations of nonparametriccurve estimators’,J. Comput. Graph. Statist. 3, 35–56.

    Google Scholar 

  • Freund, Y. (1995), ‘Boosting a weak learning algorithm by majority’,Information and Computation 121, 256–285.

    Article  MathSciNet  Google Scholar 

  • Freund, Y. and Schapire, R. (1996), Experiments with a new boosting algorithm,in ‘Machine Learning: Proceedings of the Thirteenth International Conference’, Morgan Kaufman, San Fransisco, pp. 148–156.

    Google Scholar 

  • Friedman, J. H., Stuetzle, W. and Schroeder, A. (1984), ‘Projection pursuit density estimation’,Amer. Statist. Assoc. 79, 599–608.

    Article  MathSciNet  Google Scholar 

  • Hall, P. and Wand, M. P. (1996), ‘On the accuracy of binned kernel density estimator’,J. Multivariate Anal. 56, 165–184.

    Article  MathSciNet  Google Scholar 

  • Härdle, W. and Scott, D. (1992), ‘Smoothing by weighted averaging of rounded points’,Comput. Statist. 7, 97–128.

    MathSciNet  MATH  Google Scholar 

  • Holmström, L., (2000), ‘The error and the computational complexity of a multivariate binned kernel density estimator’,J. Multivariate Anal. 72, 264–309.

    Article  MathSciNet  Google Scholar 

  • Holmström, L., Hoti, F. and Klemelä, J. (2003), ‘Flexible multivariate histograms and level set tree plots’. Manuscript.

  • Klemelä, J. (2003), ‘Visualization of multivariate density estimates with level set trees’. Accepted to J. Comput. Graph. Statist. * http://www.denstruct.net

  • Korostelev, A. P. and Tsybakov, A. B. (1993), ‘Estimation of the density support and its functionals’,Probl. Inf. Transm. 29, 1–15.

    MATH  Google Scholar 

  • Schapire, R. (1990), ‘The strength of weak learnability’,Machine Learning 5, 197–227.

    Google Scholar 

  • Scott, D. W. (1985), ‘Average shifted histograms: effective nonparametric density estimators in several dimensions’,Ann. Statist. 13, 1024–1040.

    Article  MathSciNet  Google Scholar 

  • Scott, D. W. (1992),Multivariate Density Estimation, Wiley.

  • Scott, D. W. and Wand, M. P. (1991), ‘Feasibility of multivariate density estimates’,Biometrika 78, 197–205.

    Article  MathSciNet  Google Scholar 

  • Seifert, B., Brockmann, M., Engel, J. and Gasser, T. (1994), ‘Fast algorithms for nonparametric curve estimation’,J. Comput. Graph. Statist. 3, 192–213.

    MathSciNet  Google Scholar 

  • Walther, G. (1997), ‘Granulometric smoothing’,Ann. Statist. 25, 2273–2299.

    Article  MathSciNet  Google Scholar 

  • Wand, M. P. (1994), ‘Fast computation of multivariate kernel estimators’,J. Comput. Graph. Statist. 3, 433–445.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Writing of this article was financed by Deutsche Forschungsgemeinschaft under project MA1026/8-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemelä, J. Algorithms for manipulation of level sets of nonparametric density estimates. Computational Statistics 20, 349–368 (2005). https://doi.org/10.1007/BF02789708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789708

Keywords