Skip to main content
Log in

Homology and ontogeny: pattern and process in comparative developmental biology

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

In this article the interface between development and homology is discussed. Development is here interpreted as a sequence of evolutionarily independent stages. Any approach stressing the importance of specific developmental stages is rejected. A homology definition is favoured which includes similarity and complexity serves as a test for homology. Complexity is seen as the possibility of subdividing a character into evolutionarily independent corresponding substructures. Topology as a test for homology is critically discussed because corresponding positions are not necessarily indicative of homology. Complexity can be used twofold for homology assessments of development: either stages or processes of development are homologised. These two approaches must not be conflated. This distinction leads to the conclusion that there is no ontogenetic homology “criterion”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alwes, F., Scholtz, G., 2004. Cleavage and gastrulation of the euphausiaceanMeganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123, 125–137.

    Article  Google Scholar 

  • Angelini, D.R., Kaufman, T.C., 2005. Insect appendages and comparative ontogenetics. Dev. Biol. (in press).

  • Ax, P., 1988. Systematik in der Biologie. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Bang, R., DeSalle, R., Wheeler, W., 2000. Transformationalism, taxism, and developmental biology in systematics. Syst. Biol. 49, 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Bock, W.J., 1989. The homology concept: its philosophical foundation and practical methodology. Zool. Beitr. (NF) 32, 327–353.

    Google Scholar 

  • Bolker, J.A., Raff, R.A., 1996. Developmental genetics and traditional homology. BioEssays 18, 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Boyan, G.S., Williams, J.L.D., 1995. Lineage analysis as an analytical tool in the insect nervous system: bringing order to interneurons. In: Breidbach, O., Kutsch, W. (Eds.), The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhäuser, Basel, pp. 273–301.

    Google Scholar 

  • Brigandt, I., 2002. Homology and the origin of causes. Biol. Phil. 17, 389–407.

    Article  Google Scholar 

  • Brigandt, I., 2003. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. J. Exp. Zool. (Mol. Dev. Evol.) 299B, 9–17.

    Article  Google Scholar 

  • Brower, A.V.Z., Schawaroch, V., 1996. Three steps of homology assessment. Cladistics 12, 265–272.

    Google Scholar 

  • Conklin, E.G., 1905. Organization and cell-lineage of the ascidian egg. Proc. Acad. Natl. Sci. Philadelphia 13, 1–119.

    Google Scholar 

  • Davis, G.K., D’Alessio, J.A., Patel, N.H., 2005. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev. Biol. 285, 169–184.

    Article  PubMed  CAS  Google Scholar 

  • de Beer, G.R., 1971. Homology, an Unsolved Problem. Oxford University Press, London.

    Google Scholar 

  • dePinna, M.C.C., 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7, 367–394.

    Article  Google Scholar 

  • Dickinson, W.J., 1995. Molecules and morphology: where is the homology? TIG 11, 119–121.

    PubMed  CAS  Google Scholar 

  • Doe, C.Q., 1992. Molecular markers for identified neuroblasts and ganglion mother cells in theDrosophila central nervous system. Development 116, 855–863.

    PubMed  CAS  Google Scholar 

  • Dohle, W., 1976. Zur Frage des Nachweises von Homologien durch die komplexen Zell- und Teilungsmuster in der embryonalen Entwicklung höherer Krebse (Crustacea, Malacostraca, Peracarida). Sitzber. Ges. Naturf. Freunde Berlin (N.F.) 16, 125–144.

    Google Scholar 

  • Dohle, W., 1989a. Zur Frage der Homologie ontogenetischer Muster. Zool. Beitr. (N.F.) 32, 355–389.

    Google Scholar 

  • Dohle, W., 1989b. Differences in cell pattern formation in early embryology and their bearing on evolutionary changes in morphology. Geobios mém. spec. 12, 145–155.

    Article  Google Scholar 

  • Dohle, W., 1999. The ancestral cleavage pattern of the clitellates and its phylogenetic deviations. Hydrobiologia 402, 267–283.

    Article  Google Scholar 

  • Dohle, W., 2004. Die Verwandtschaftsbeziehungen der Großgruppen der Deuterostomier: Alternative Hypothesen und ihre Begründung. Sitzber. Ges. Naturf. Freunde Berlin (N.F.) 43, 123–162.

    Google Scholar 

  • Dohle, W., Gerberding, M., Hejnol, A., Scholtz, G., 2004. Cell lineage, segment differentiation and gene expression in crustaceans. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 95–133.

    Google Scholar 

  • Donoghue, M.J., Sanderson, M.J., 1994. Complexity and homology in plants. In: Hall, B.K. (Ed.), Homology, the Hierarchical Basis of Comparative Biology. Academic Press, San Diego, pp. 394–421.

    Google Scholar 

  • Duboule, D., 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development (suppl.), 135–142.

  • Edgecombe, G.D., Richter, S., Wilson, G.D.F., 2003. The mandibular gnathal edges: homologous structures throughout Mandibulata? Afr. Invertebr. 44, 115–135.

    Google Scholar 

  • Fechter, H., 1971. Manteltiere, Schädellose, Rundmäuler. Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Félix, M.-A., De Ley, P., Sommer, R.J., Frisse, L., Nadler, S.A., Thomas, W.K., Vanfleteren, J., Sternberg, P.W., 2000. Evolution of vulva development in the Cephalobina (Nematoda). Dev. Biol. 221, 68–86.

    Article  PubMed  CAS  Google Scholar 

  • Franz, V., 1927. Ontogenie und Phylogenie. Das sogenannte biogenetische Grundgesetz und die biometabolischen Modi. Abh. Theor. organ. Entw. 3, 1–51.

    Google Scholar 

  • Galis, F., Metz, J.A.J., 2001. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J. Exp. Zool. (Mol. Dev. Evol.) 291, 195–204.

    Article  CAS  Google Scholar 

  • Gegenbaur, C., 1878. Grundriss der vergleichenden Anatomie. Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Gehring, W.J., 2004. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 48, 707–717.

    Article  PubMed  Google Scholar 

  • Gerberding, M., Browne, W.E., Patel, N.H., 2002. Cell lineage analysis of the amphipodParhyale hawaiensis reveals and early restriction of cell fates. Development 129, 5789–5801.

    Article  PubMed  CAS  Google Scholar 

  • Ghiselin, M.T., 1969. The distinction between similarity and homology. Syst. Zool. 18, 148–149.

    Article  Google Scholar 

  • Gilbert, S.F., Bolker, J.A., 2001. Homologies of process and modular elements of embryonic construction. J. Exp. Zool. (Mol. Dev. Evol.) 291, 1–12.

    Article  CAS  Google Scholar 

  • Grant, T., Kluge, A.G., 2004. Transformation series as an ideographic character concept. Cladistics 20, 23–31.

    Article  Google Scholar 

  • Greenspan, R.J., 2001. The flexible genome. Nature Rev. Gen. 2, 383–387.

    Article  CAS  Google Scholar 

  • Guralnick, R., 2002. A recapitulation of the rise and fall of the cell lineage research program: the evolutionary-developmental relationship to cleavage to homology, body plants and life history. J. Hist. Biol. 35, 537–567.

    Article  Google Scholar 

  • Haeckel, E., 1866. Generelle Morphologie der Organismen. Georg Reimer, Berlin.

    Google Scholar 

  • Hall, B.K. (Ed.), 1994. Homology—The Hierarchical Basis of Comparative Biology. Academic Press, San Diego.

    Google Scholar 

  • Hall, B.K., 1995. Homology and embryonic development. Evolution. Biol. 28, 1–37.

    CAS  Google Scholar 

  • Hall, B.K., 1999. Evolutionary Developmental Biology, second ed. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Haszprunar, G., 1992. The types of homology and their significance for evolutionary biology and phylogenetics. J. Evol. Biol. 5, 13–24.

    Article  Google Scholar 

  • Hejnol, A., Scholtz, G., 2004. Clonal analysis ofDistal-less andengrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev. Genes Evol. 214, 473–485.

    PubMed  CAS  Google Scholar 

  • Hennig, W., 1966. Phylogenetic Systematics. University of Illinois Press, Urbana.

    Google Scholar 

  • Hennig, W., 1982. Phylogenetische Systematik. Paul Parey, Berlin.

    Google Scholar 

  • Hertzler, P.L., Clark Jr., W.H., 1992. Cleavage and gastrulation in the shrimpSicyonia ingentis. Development 116, 127–140.

    PubMed  CAS  Google Scholar 

  • Hughes, C.L., Kaufman, T.C., 2002.Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4, 459–499.

    Article  PubMed  CAS  Google Scholar 

  • Janies, D., DeSalle, R., 1999. Development, evolution, and corroboration. Anat. Rec. 257, 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, R.A., Scholtz, G., 2005. Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann, S., Jenner, R.A. (Eds.), Crustacea and Arthropod Relationships. Taylor & Francis, Boca Raton, pp. 355–385.

    Google Scholar 

  • Jockusch, E.L., Ober, K.A., 2004. Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J. Hered. 95, 382–396.

    Article  PubMed  CAS  Google Scholar 

  • Jockusch, E.L., Nulsen, C., Newfeld, S.J., Nagy, L.M., 2000. Leg development in flies versus grasshoppers: differences indpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127, 1617–1626.

    PubMed  CAS  Google Scholar 

  • Katz, P.S., Tazaki, K., 1992. Comparative and evolutionary aspects of the crustacean stomatogastric system. In: Harris-Warrick, R.M., Marder, E., Selverston, A.I., Moulins, M. (Eds.), Dynamic Biological Networks: The Stomatogastric Nervous System. MIT Press, Cambridge, MA, pp. 221–261.

    Google Scholar 

  • Kluge, A.G., 2003. The repugnant and the mature in phylogenetic inference: atemporal similarity and historical identity. Cladistics 19, 356–368.

    Article  Google Scholar 

  • Kuo, D.-H., Shankland, M., 2003. A distinct pattern mechanism of O and P cell fates in the development of the rostral segments of the leechHelobdella robusta: implications for the evolutionary dissociation of developmental pathway and morphological outcome. Development 131, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Larimer, J.L., Pease, C.M., 1990. Unexpected divergence among identified interneurons in different abdominal segments of the crayfishProcambarus clarkii. J. Exp. Zool. 253, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Laubichler, M.D., Maienschein, J., 2003. Ontogeny, anatomy, and the problem of homology: Carl Gegenbaur and the American tradition of cell lineage studies. Theory Biosci. 122, 194–203.

    Google Scholar 

  • Laugsch, M., Schierenberg, E., 2004. Differences in maternal supply and early development of closely related nematode species. Int. J. Dev. Biol. 48, 655–662.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P.N., Callaerts, P., de Couet, H.G., Martindale, M.Q., 2003. CephalopodHox genes and the origin of morphological novelties. Nature 424, 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P.Z., Kaufman, T.C., 2005.Even-skipped is not a pair-rule gene but has segmental and gap-like functions inOncopeltus fasciatus, an intermediate germband insect. Development 132, 2081–2092.

    Article  PubMed  CAS  Google Scholar 

  • Løvtrup, S., 1978. On von Baerian and Haeckelian recapitulation. Syst. Zool. 27, 348–352.

    Article  Google Scholar 

  • Mayr, E., 1969. Principles of Systematic Zoology. McGraw-Hill, New York.

    Google Scholar 

  • Mickoleit, G., 2004. Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil, München.

    Google Scholar 

  • Mindell, D.P., Meyer, A., 2001. Homology evolving. Tree 16, 434–440.

    Google Scholar 

  • Minelli, A., 1998. Molecules, developmental modules, and phenotypes: a combinatorial approach to homology. Mol. Phylogen. Evol. 9, 340–347.

    Article  CAS  Google Scholar 

  • Minelli, A., 2003. The Development of Animal Form. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mittmann, B., 2002. Early neurogenesis in the horseshoe crabLimulus polyphemus and its implication for arthropod phylogeny. Biol. Bull. 203, 221–222.

    Article  PubMed  Google Scholar 

  • Mittmann, B., Scholtz, G., 2003. Development of the nervous system in the “head” ofLimulus polyphemus (Chelicerata, Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev. Genes Evol. 213, 9–17.

    PubMed  Google Scholar 

  • Mocek, R., 1998. Die werdende Form. Basilisken-Presse, Marburg.

    Google Scholar 

  • Müller, F., 1864. Für Darwin. Engelmann, Leipzig.

    Google Scholar 

  • Müller, G.B., Wagner, G.P., 1996. Homology,Hox genes, and developmental biology. Am. Zool. 36, 4–13.

    Google Scholar 

  • Nielsen, C., 2001. Animal Evolution, second ed. Oxford University Press, Oxford.

    Google Scholar 

  • Nielsen, C., Martinez, P., 2003. Patterns of gene expression: homology or homocrazy. Dev. Gen. Evol. 213, 149–154.

    Google Scholar 

  • Oda-Ishii, I., Bertrand, V., Matsuo, I., Lemaire, P., Saiga, H., 2005. Making very similar embryos with divergent genomes: conservation of regulatory mechanisms ofOtx between the ascidiansHalocynthis roretzi andCiona intestinalis. Development 132, 1663–1674.

    Article  PubMed  CAS  Google Scholar 

  • Osche, G., 1973. Das Homologisieren als eine grundlegende Methode der Phylogenetik. Aufs. Red. Senckenberg. Naturf. Ges. 24, 155–165.

    Google Scholar 

  • Osche, G., 1982. Rekapitulationsentwicklung und ihre Bedeutung für die Phylogenetik—wann gilt die “Biogenetische Grundregel”? Verh. naturwiss. Ver. Hamburg (N.F.) 25, 5–31.

    Google Scholar 

  • Panchen, A.L., 1992. Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Panchen, A.L., 1994. Richard Owen and the concept of homology. In: Hall, B.K. (Ed.), Homology—The Hierarchical Basis of Comparative Biology. Academic Press, San Diego, pp. 21–62.

    Google Scholar 

  • Patel, N.H., Ball, E.E., Goodman, C.S., 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Patel, N.H., Condron, B.G., Zinn, K., 1994. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367, 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, C., 1982. Morphological characters and homology. In: Joysey, K.A., Friday, A.E. (Eds.), Problems of Phylogenetic Reconstruction. Academic Press, London, pp. 21–74.

    Google Scholar 

  • Paulus, H., 1996. Euarthropoda. In: Westheide, W., Rieger, R. (Eds.), Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp. 435–444.

    Google Scholar 

  • Paulus, H.F., 2000. Phylogeny of Myriapoda—Crustacea—Insecta: a new attempt using photoreceptor structure. J. Zool. Syst. Evol. Res. 38, 189–208.

    Article  Google Scholar 

  • Pearson, K.G., Boyan, G.S., Bastiani, M., Goodman, C.S., 1985. Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts. J. Comp. Neurol. 233, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Popadic, A., Panganiban, G., Rusch, D., Shear, W.A., Kaufman, T.C., 1998. Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev. Genes Evol. 208, 142–150.

    Article  PubMed  CAS  Google Scholar 

  • Raff, R.A., 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago.

    Google Scholar 

  • Raff, R.A., 1999. Larval homologies and radical evolutionary changes in early development. In: Homology (Novartis foundation Symposium 222). Wiley, Chichester, pp. 110–121.

    Google Scholar 

  • Remane, A., 1952. Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Geest und Portig, Leipzig.

    Google Scholar 

  • Remane, A., 1960. Die Beziehungen zwischen Phylogenie und Ontogenie. Zool. Anz. 164, 306–337.

    Google Scholar 

  • Richardson, M.K., 1999. Vertebrate evolution: the developmental origins of adult variation. BioEssays 21, 604–613.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M.K., Hanken, J., Gooneratne, M.L., Pieau, C., Raynaud, A., Selwood, L., Wright, G.M., 1997. There is no highly conserved embryonic stage in the vertebrates, implications for current theories of evolution and development. Anat. Embryol. 196, 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M.K., Allen, S.P., Wright, G.M., Raynaud, A., Hanken, J., 1998. Somite number and vertebrate evolution. Development 125, 151–160.

    PubMed  CAS  Google Scholar 

  • Richter, S., 2002. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Divers. Evol. 2, 217–237.

    Article  Google Scholar 

  • Riedl, R., 1975. Die Ordnung des Lebendigen. Parey, Hamburg.

    Google Scholar 

  • Riedl, R., 2000. Strukturen der Komplexität. Springer, Berlin.

    Google Scholar 

  • Rieppel, O.C., 1988. Fundamentals of Comparative Biology. Birkhäuser, Basel.

    Google Scholar 

  • Rieppel, O., Kearney, M., 2002. Similarity. Biol. J. Linn. Soc. 75, 59–82.

    Article  Google Scholar 

  • Roth, V.L., 1984. On homology. Biol. J. Linn. Soc. 22, 13–29.

    Article  Google Scholar 

  • Roth, V.L., 1991. Homology and hierarchies: problems solved and unresolved. J. Evol. Biol. 4, 167–194.

    Article  Google Scholar 

  • Rudel, D., Sommer, R.J., 2003. The evolution of developmental mechanisms. Dev. Biol. 264, 15–37.

    Article  PubMed  CAS  Google Scholar 

  • Salthe, S.N., 1993. Development and Evolution—Complexity and Change in Biology. MIT Press, Cambridge.

    Google Scholar 

  • Sander, K., 1983. The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin, B.C., Holder, N., Wylie, C.G. (Eds.), Development and Evolution. Cambridge University Press, Cambridge, pp. 137–158.

    Google Scholar 

  • Schmid, A., Chiba, A., Doe, C.Q., 1999. Clonal analysis ofDrosophila embryonic neuroblasts: neural cell types, axon projections and muscular targets. Development 126, 4653–4689.

    PubMed  CAS  Google Scholar 

  • Schmitt, M., 1995. The homology concept—still alive. In: Breidbach, O., Kutsch, W. (Eds.), The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhäuser, Basel, pp. 425–438.

    Google Scholar 

  • Scholtz, G., 1997. Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey, R.A., Thomas, R.H. (Eds.), Arthropod Relationships. Chapman & Hall, London, pp. 317–332.

    Google Scholar 

  • Scholtz, G., 2000. Evolution of the nauplius stage in malacostracan crustaceans J. Zool. Syst. Evol. Res. 38, 175–187.

    Article  Google Scholar 

  • Scholtz, G., 2002. The Articulata hypothesis—or what is a segment? Org. Divers. Evol. 2, 197–215.

    Article  Google Scholar 

  • Scholtz, G., 2004. Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 3–16.

    Google Scholar 

  • Scholtz, G., Dohle, W., 1996. Cell lineage and cell fate in crustacean embryos—a comparative approach. Int. J. Dev. Biol. 40, 211–220.

    PubMed  CAS  Google Scholar 

  • Scholtz, G., Wolff, G., 2002. Cleavage, gastrulation, and germ disc formation of the amphipodOrchestia cavimana (Crustacea, Malacostraca, Peracarida). Contrib. Zool. 71, 9–28.

    Google Scholar 

  • Scholtz, G., Mittmann, B., Gerberding, M., 1998. The pattern ofdistal-less expression in the mouthparts of crustaceans, myriapods and insect: new evidence for a gnathobasic mandible and the common origin of Mandibulata. Int. J. Dev. Biol. 42, 801–810.

    PubMed  CAS  Google Scholar 

  • Seidel, F., 1960. Körpergrundgestalt und Keimstruktur: eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Überlegungen. Zool. Anz. 164, 245–305.

    Google Scholar 

  • Seo, H.-C., Edvardsen, R.B., Maeland, A.D., Bjordal, M., Jensen, M.F., Hansen, A., Flaat, M., Weissenbach, J., Lehrach, H., Wincker, P., Reinhard, R. Chourrout, D., 2004.Hox cluster disintegration with persistent anteroposterior order of expression inOikopleura dioica. Nature 431, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Sewertzoff, A.N., 1931. Morphologische Gesetzmäßigkeiten der Evolution. Fischer, Jena.

    Google Scholar 

  • Siewing, R., 1979. Homology of cleavage types? Fortschr. Zool. Syst. Evolutionsforch. 1, 7–18.

    Google Scholar 

  • Simpson, P., 2002. Evolution of development in closely related species of flies and worms. Nat. Rev. Gen. 3, 907–917.

    Article  CAS  Google Scholar 

  • Simpson, P., Woehl, R., Usui, K., 1999. The development and evolution of bristle patterns in Diptera. Development 125, 1349–1364.

    Google Scholar 

  • Slack, J.M.W., Holland, P.W.H., Graham, C.F., 1993. The zootype and the phylotypic stage. Nature 361, 490–492.

    Article  PubMed  CAS  Google Scholar 

  • Spemann, H., 1915. Zur Geschichte und Kritik des Begriffs der Homologie. In: Hinneberg, P. (Ed.), Die Kultur der Gegenwart; Allgemeine Biologie. Teubner, Leipzig, pp. 63–86.

    Google Scholar 

  • Stark, D., 1979. Vergleichende Anatomie der Wirbeltiere, Band 2: Das Skeletsystem. Springer, Berlin.

    Google Scholar 

  • Stollewerk, A., Weller, M., Tautz, D., 2001. Neurogenesis in the spiderCupiennius salei. Development 128, 2673–2688.

    PubMed  CAS  Google Scholar 

  • Strathmann, R.R., 1988. Larvae, phylogeny, and von Baer’s law. In: Paul, C.R.C., Smith, A.B. (Eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford, pp. 53–68.

    Google Scholar 

  • Striedter, G.F., Northcutt, R.G., 1991. Biological hierarchies and the concept of homology. Brain Behav. Evol. 38, 177–189.

    PubMed  CAS  Google Scholar 

  • Sudhaus, W., 1980. Problembereiche der Homologienforschung., Verh. Dtsch. Zool. Ges. 73, 177–187.

    Google Scholar 

  • Sudhaus, W., Rehfeld, K., 1992. Einführung in die Phylogenetik und Systematik. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Tautz, D., 1992. Redundancies, development and the flow of information. BioEssays. 14, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • van Valen, L.M., 1982. Homology and causes. J. Morphol. 173, 305–312.

    Article  PubMed  Google Scholar 

  • von Baer, K.E., 1828. Ueber Entwickelungsgeschichte der Thiere. Bornträger, Königsberg.

    Google Scholar 

  • von Baer, K.E., 1873. Entwickelt sich die Larve der einfachen Ascidien in der ersten Zeit nach dem Typus der Wirbelthiere? Mém. Acad. Imp. Sci. St. Pétersbourg 19, 1–35.

    Google Scholar 

  • Wägele, J.-W., 2005. Foundations of Phylogenetic Systematics. Verlag Dr. Friedrich Pfeil, München.

    Google Scholar 

  • Wagner, G.P., 1989. The biological homology concept. Ann. Rev. Ecol. Syst. 20, 51–69.

    Article  Google Scholar 

  • Wagner, G.P., Misof, B. Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.

    Article  Google Scholar 

  • Whitington, P.M., 2004. The development of the crustacean nervous system. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 135–167.

    Google Scholar 

  • Wilson, E.B., 1894. The embryological criterion of homology. In: Biological Lectures Delivered at the Marine Biological Laboratory of Wood’s Hole. Ginn & Co., Boston, pp. 101–124.

    Google Scholar 

  • Wray, G.A., 1999. Evolutionary dissociations between homologous genes and homologous structures. In: Homology (Novartis foundation Symposium 222). Wiley, Chichester, pp. 189–203.

  • Wray, G.A., Abouheif, E., 1998. When is homology not homology? Curr. Opin. Gen. Dev. 8, 675–680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Scholtz.

Additional information

From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20–21, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept?”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtz, G. Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci. 124, 121–143 (2005). https://doi.org/10.1007/BF02814480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814480

Keywords

Navigation