Skip to main content
Log in

Vertebrate head development: Segmentation, novelties, and homology

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seennot as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned byDlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balfour, F.M., 1878. The development of the elasmobranchial fishes. J. Anat. Physiol. 11, 405–706.

    Google Scholar 

  • Birgbauer, E., Sechrist, J., Bronner-Fraser, M., Fraser, S., 1995. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development 121, 935–945.

    PubMed  CAS  Google Scholar 

  • Bjerring, H., 1977. A contribution to structural analysis of the head of craniate animals. Zool. Scr. 6, 127–183.

    Google Scholar 

  • Bjerring, H., 1984. Major anatomical steps towards craniotedness: a heterodox view based largely on embryological data. J. Vert. Palaeontol. 4, 17–29.

    Article  Google Scholar 

  • Cerny, R., Lwigale, P., Ericsson, R., Meulemans, D., Epperlein, H.-H., Bronner-Fraser, M., 2004a. Developmental origins and evolution of jaws: new interpretation of “maxillary” and “mandibular” Dev. Biol. 276, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Cerny, R., Meulemans, D., Berger, J., Wilsch-Bräuninger, M., Kurth, T., Bronner-Fraser, M., Epperlein, H.-H., 2004b. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev. Biol. 266, 252–269.

    Article  PubMed  CAS  Google Scholar 

  • Couly, G.F., Coltey, P.M., Le Douarin, N.M., 1993. The triple origin of the skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429.

    PubMed  CAS  Google Scholar 

  • Couly, G.F., Creuzet, S., Bennaceur, S., Vincent, C., Le Douarin, N.M., 2002. Interactions between Hoxnegative cephalic neural crest cells and the foregut endodern in patterning the facial skeleton in the vertebrate head. Development 129, 1061–1073.

    PubMed  CAS  Google Scholar 

  • de Beer, G.R., 1937. The Development of the Vertebrate Skull. Oxford University Press, Oxford.

    Google Scholar 

  • Depew, M.J., Lufkin, T., Rubenstein, J.L., 2002. Specification of jaw subdivisions by Dlx genes. Science 298, 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Epperlein, H.-H., Meulemans, D., Bronner-Fraser, M., Steinbeisser, H., Selleck, M.A., 2000. Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation. Development 127, 2751–2761.

    PubMed  CAS  Google Scholar 

  • Ericsson, R., Cerny, R., Falck, P., Olsson, L., 2004. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl,Ambystoma mexicanum. Dev. Dyn. 231, 237–247.

    Article  PubMed  Google Scholar 

  • Gegenbaur, C., 1888. Die metamerie des Kopfes und die Wirbeltheorie des Kopfskelettes. Morphol. Jahrbuch 13, 1–144.

    Google Scholar 

  • Goodrich, E.S., 1930. Studies on the Structure and Development of Vertebrates. Macmillan, London.

    Google Scholar 

  • Graham, A., Smith, A., 2001. Patterning the pharyngeal arches. Bioessays 23, 54–61.

    Article  PubMed  CAS  Google Scholar 

  • Graham, A., Köntges, G., Lumsden, A., 1996. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol. Cell. Neurosci. 8, 76–83.

    Article  CAS  Google Scholar 

  • Graham, A., Begbie, J., McGonnell, I., 2004. Significance of the cranial neural crest. Dev. Dyn. 229, 5–13.

    Article  PubMed  Google Scholar 

  • Grammatopoulos, G.A., Bell, E., Toole, L., Lumsden, A., Tucker, A.S., 2000. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127, 5355–5365.

    PubMed  CAS  Google Scholar 

  • Haas, A., 2001. Mandibular arch musculature of anuran tadpoles, with comments on homologies of amphibian jaw muscles. J. Morphol. 247, 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Haeckel, E., 1874. Antropogenie oder Entwickelungsgeschichte des Menschen. W. Engelmann, Leipzig.

    Google Scholar 

  • Hall, B.K., 1994. Homology. The Hierarchial Basis of Comparative Biology. Academic Press, San Diego and London.

    Google Scholar 

  • Hall, B.K., 1998. Evolutionary Developmental Biology, second ed. Kluwer, Dordrecht.

    Google Scholar 

  • Hall, B.K., Hörstadius, S., 1988. The Neural Crest. Oxford University Press, Oxford.

    Google Scholar 

  • Helms, J.A., Schneider, R.A., 2003. Cranial skeletal biology. Nature 423, 326–331.

    Article  PubMed  CAS  Google Scholar 

  • Hensey, C., Gautier, J., 1998. Programmed cell death duringXenopus development: a spatio-temporal analysis. Dev. Biol. 203, 36–48.

    Article  PubMed  CAS  Google Scholar 

  • Holder, N., Klein, R., 1999. Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033–2044.

    PubMed  CAS  Google Scholar 

  • Hunt, P., Gulisano, M., Cook, M., Sham, M.H., Faiella, A., Wilkinson, D., Boncinelli, E., Krumlauf, R., 1991a. A distinct Hox code for the branchial region of the vertebrate head. Nature (London) 353, 861–864.

    Article  CAS  Google Scholar 

  • Hunt, P., Whiting, J., Muchamore, I., Marshall, H., Krumlauf, R., 1991b. Homeobox genes and models for patterning the hindbrain and branchial arches. Dev. Suppl. 1, 187–196.

    Google Scholar 

  • Huxley, T.H., 1858. The Croonian Lecture—on the theory of the vertebrate skull. Proc. Zool. Soc. London 9, 381–457.

    Article  Google Scholar 

  • Jacobson, A.G., 1988. Somitomeres: mesodermal segments of vertebrate embryos. Development 104, 209–220.

    PubMed  Google Scholar 

  • Jacobson, A.G., Meier, S.P., 1984. Morphogenesis of the head of a newt: mesodermal segments, neuromeres, and distribution of neural crest. Dev. Biol. 106, 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Janvier, P., 1996. Early Vertebrates. Oxford University Press, Oxford.

    Google Scholar 

  • Jarvik, E., 1980. Basic Structure and Evolution of Vertebrates, vol. 1. Academic Press, London.

    Google Scholar 

  • Jarvik, E., 1981. Basic Structure and Evolution of Vertebrates, vol. 2. Academic Press, London.

    Google Scholar 

  • Källén, B., 1956. Experiments on neuromery inAmbystoma punctatum embryos. J. Embryol. Exp. Morphol. 4, 66–72.

    Google Scholar 

  • Köntges, G., Lumsden, A., 1996. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242.

    PubMed  Google Scholar 

  • Köntges, G., Matsuoka, T., 2002. Evolution. Jaws of the fates. Science 298, 371–373.

    Article  Google Scholar 

  • Kulesa, P., Bronner-Fraser, M., Fraser, S., 2000. In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127, 2843–2852.

    PubMed  CAS  Google Scholar 

  • Kuratani, S., 2003. Evolutionary developmental biology and vertebrate head segmentation: a perspective from developmental constraint. Theor. Biosci. 122, 230–251.

    Google Scholar 

  • Kuratani, S., 2005. Craniofacial development and the evolution of the vergebrates: the old problems on a new background. Zool. Sci. 22, 1–19.

    Article  PubMed  Google Scholar 

  • Kuratani, S., Horigome, N., Hirano, S., 1999. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate,Lapetra japonica. Dev. Biol. 210 381–400.

    Article  PubMed  CAS  Google Scholar 

  • Kuratani, S., Nobusada, Y., Horigome, N., Shigetani, Y., 2001. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Phil. Trans. R. Soc. London B Biol. Sci. 356, 1615–1632.

    Article  CAS  Google Scholar 

  • Lee, S.H., Bedard, O., Buchtova, M., Fu, K., Richman, J.M., 2004. A new origin for the maxillary jaw. Dev. Biol. 276, 207–224.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, E., 1982. The Growth of Biological Thought. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Meier, S.P., Packard, D.S.J., 1984. Morphogenesis of the cranial segments and distribution of neural crest in embryos of the snapping turtle,Chelydra serpentina. Dev. Biol. 102, 309–323.

    Article  PubMed  CAS  Google Scholar 

  • Mitgutsch, C., 2003. On Carl Gegenbaur’s theory on head metamerism and the selection of taxa for comparisons. Theor. Biosci. 122, 204–229.

    Google Scholar 

  • Noden, D.M., 1983a. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am. J. Anat. 168, 257–276.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M., 1983b. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M., 1986. Patterning of avian craniofacial muscles. Dev. Biol. 116, 347–356.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M., Marcucio, R., Borycki, A.G., Emerson, C.P., 1999. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev. Dyn. 216, 96–112.

    Article  PubMed  CAS  Google Scholar 

  • Oken, L., 1807. Über die Bedeutung der Schädelknochen. Ein Programm beim Antritt der Professur an der Gesamt-Universität zu Jena. Göbhardt, Bamberg and Würzburg.

    Google Scholar 

  • Olsson, L., 2005. Alternatives to Darwinism in Sweden: Lamarckism and idealistic morphology, disbelief in mutations and the poverty of selection. Jahrbuch für Europäische Wissenschaftskultur 1, 1–14.

    Google Scholar 

  • Olsson, L., Hanken, J., 1996. Cranial neural-crest migration and chondrogenic fate in the Oriental firebellied toadBombina orientalis: defining the ancestral pattern of head development in anuran amphibians. J. Morphol. 229, 105–120.

    Article  Google Scholar 

  • Olsson, L., Falck, P., Lopez, K., Cobb, J., Hanken, J., 2001. Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian,Bombina orientalis. Dev. Biol. 237, 354–367.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualetti, M., Ori, M., Nardi, I., Rijli, F.M., 2000. Ectopic Hoxa 2 induction after neural crest migration results in homeosis of jaw elements inXenopus. Development 127, 5367–5378.

    PubMed  CAS  Google Scholar 

  • Richards, R.J., 2002. The Romantic conception of life. Science and Philosophy in the Age of Goethe. Chicago University Press, Chicago and London.

    Google Scholar 

  • Richman, J.M., Lee, S.H., 2003. About face: signals and genes controlling jaw patterning and identity in vertebrates. Bioessays 25, 554–568.

    Article  PubMed  CAS  Google Scholar 

  • Rijli, F.M., Gavalas, A., Chambon, P., 1998. Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol. 42, 393–401.

    PubMed  CAS  Google Scholar 

  • Rose-Engelberth, M.J., 1999. Das Kopfproblem der Vertebraten—Kenntnisstand und Problematik. Unpublished Ph.D. thesis, Witten-Herdecke.

  • Schilling, T.F., Kimmel, C.B., 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494.

    PubMed  CAS  Google Scholar 

  • Schneider, R.A., Helms, J.A., 2003. The cellular and molecular origins of beak morphology. Science 299, 565–568.

    Article  PubMed  CAS  Google Scholar 

  • Shigetani, Y., Sugahara, F., Kawakami, Y., Murakami, Y., Hirano, S., Kuratani, S., 2002. Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296, 1316–1319.

    Article  PubMed  CAS  Google Scholar 

  • Shigetani, Y., Sugahara, F., Kuratani, S., 2005. A new evolutionary scenario for the vertebrate jaw. Bioessays 27, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A., Robinson, V., Patel, K., Wilkinson, D.G., 1997. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.M., Coates, M.I., 2001. Evolutionary origins of teeth and jaws: developmental models and phylogentic patterns. In: Teaford, M.F., Smith, M.M., Ferguson, M.W.J. (Eds.), Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge and London, pp. 133–151.

    Google Scholar 

  • Stensiö, E.A., 1927. The Devonian and Downtonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet 12, 1–391.

    Google Scholar 

  • Svensson, M.E., Haas, A., 2005. Evolutionary innovation in the vertebrate jaw: a derived morphology in anuran tadpoles and its possible developmental origin. Bioessays 27, 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Veitch, E., Begbie, J., Schilling, T.F., Smith, M.M., Graham, A., 1999. Pharyngeal arch patterning in the absence of neural crest. Curr. Biol. 9, 1481–1484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Olsson.

Additional information

From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20-1, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept?”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, L., Ericsson, R. & Cerny, R. Vertebrate head development: Segmentation, novelties, and homology. Theory Biosci. 124, 145–163 (2005). https://doi.org/10.1007/BF02814481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814481

Keywords

Navigation