Abstract
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seennot as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned byDlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by
Similar content being viewed by others
References
Balfour, F.M., 1878. The development of the elasmobranchial fishes. J. Anat. Physiol. 11, 405–706.
Birgbauer, E., Sechrist, J., Bronner-Fraser, M., Fraser, S., 1995. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development 121, 935–945.
Bjerring, H., 1977. A contribution to structural analysis of the head of craniate animals. Zool. Scr. 6, 127–183.
Bjerring, H., 1984. Major anatomical steps towards craniotedness: a heterodox view based largely on embryological data. J. Vert. Palaeontol. 4, 17–29.
Cerny, R., Lwigale, P., Ericsson, R., Meulemans, D., Epperlein, H.-H., Bronner-Fraser, M., 2004a. Developmental origins and evolution of jaws: new interpretation of “maxillary” and “mandibular” Dev. Biol. 276, 225–236.
Cerny, R., Meulemans, D., Berger, J., Wilsch-Bräuninger, M., Kurth, T., Bronner-Fraser, M., Epperlein, H.-H., 2004b. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev. Biol. 266, 252–269.
Couly, G.F., Coltey, P.M., Le Douarin, N.M., 1993. The triple origin of the skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429.
Couly, G.F., Creuzet, S., Bennaceur, S., Vincent, C., Le Douarin, N.M., 2002. Interactions between Hoxnegative cephalic neural crest cells and the foregut endodern in patterning the facial skeleton in the vertebrate head. Development 129, 1061–1073.
de Beer, G.R., 1937. The Development of the Vertebrate Skull. Oxford University Press, Oxford.
Depew, M.J., Lufkin, T., Rubenstein, J.L., 2002. Specification of jaw subdivisions by Dlx genes. Science 298, 381–385.
Epperlein, H.-H., Meulemans, D., Bronner-Fraser, M., Steinbeisser, H., Selleck, M.A., 2000. Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation. Development 127, 2751–2761.
Ericsson, R., Cerny, R., Falck, P., Olsson, L., 2004. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl,Ambystoma mexicanum. Dev. Dyn. 231, 237–247.
Gegenbaur, C., 1888. Die metamerie des Kopfes und die Wirbeltheorie des Kopfskelettes. Morphol. Jahrbuch 13, 1–144.
Goodrich, E.S., 1930. Studies on the Structure and Development of Vertebrates. Macmillan, London.
Graham, A., Smith, A., 2001. Patterning the pharyngeal arches. Bioessays 23, 54–61.
Graham, A., Köntges, G., Lumsden, A., 1996. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol. Cell. Neurosci. 8, 76–83.
Graham, A., Begbie, J., McGonnell, I., 2004. Significance of the cranial neural crest. Dev. Dyn. 229, 5–13.
Grammatopoulos, G.A., Bell, E., Toole, L., Lumsden, A., Tucker, A.S., 2000. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127, 5355–5365.
Haas, A., 2001. Mandibular arch musculature of anuran tadpoles, with comments on homologies of amphibian jaw muscles. J. Morphol. 247, 1–33.
Haeckel, E., 1874. Antropogenie oder Entwickelungsgeschichte des Menschen. W. Engelmann, Leipzig.
Hall, B.K., 1994. Homology. The Hierarchial Basis of Comparative Biology. Academic Press, San Diego and London.
Hall, B.K., 1998. Evolutionary Developmental Biology, second ed. Kluwer, Dordrecht.
Hall, B.K., Hörstadius, S., 1988. The Neural Crest. Oxford University Press, Oxford.
Helms, J.A., Schneider, R.A., 2003. Cranial skeletal biology. Nature 423, 326–331.
Hensey, C., Gautier, J., 1998. Programmed cell death duringXenopus development: a spatio-temporal analysis. Dev. Biol. 203, 36–48.
Holder, N., Klein, R., 1999. Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033–2044.
Hunt, P., Gulisano, M., Cook, M., Sham, M.H., Faiella, A., Wilkinson, D., Boncinelli, E., Krumlauf, R., 1991a. A distinct Hox code for the branchial region of the vertebrate head. Nature (London) 353, 861–864.
Hunt, P., Whiting, J., Muchamore, I., Marshall, H., Krumlauf, R., 1991b. Homeobox genes and models for patterning the hindbrain and branchial arches. Dev. Suppl. 1, 187–196.
Huxley, T.H., 1858. The Croonian Lecture—on the theory of the vertebrate skull. Proc. Zool. Soc. London 9, 381–457.
Jacobson, A.G., 1988. Somitomeres: mesodermal segments of vertebrate embryos. Development 104, 209–220.
Jacobson, A.G., Meier, S.P., 1984. Morphogenesis of the head of a newt: mesodermal segments, neuromeres, and distribution of neural crest. Dev. Biol. 106, 181–193.
Janvier, P., 1996. Early Vertebrates. Oxford University Press, Oxford.
Jarvik, E., 1980. Basic Structure and Evolution of Vertebrates, vol. 1. Academic Press, London.
Jarvik, E., 1981. Basic Structure and Evolution of Vertebrates, vol. 2. Academic Press, London.
Källén, B., 1956. Experiments on neuromery inAmbystoma punctatum embryos. J. Embryol. Exp. Morphol. 4, 66–72.
Köntges, G., Lumsden, A., 1996. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242.
Köntges, G., Matsuoka, T., 2002. Evolution. Jaws of the fates. Science 298, 371–373.
Kulesa, P., Bronner-Fraser, M., Fraser, S., 2000. In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127, 2843–2852.
Kuratani, S., 2003. Evolutionary developmental biology and vertebrate head segmentation: a perspective from developmental constraint. Theor. Biosci. 122, 230–251.
Kuratani, S., 2005. Craniofacial development and the evolution of the vergebrates: the old problems on a new background. Zool. Sci. 22, 1–19.
Kuratani, S., Horigome, N., Hirano, S., 1999. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate,Lapetra japonica. Dev. Biol. 210 381–400.
Kuratani, S., Nobusada, Y., Horigome, N., Shigetani, Y., 2001. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Phil. Trans. R. Soc. London B Biol. Sci. 356, 1615–1632.
Lee, S.H., Bedard, O., Buchtova, M., Fu, K., Richman, J.M., 2004. A new origin for the maxillary jaw. Dev. Biol. 276, 207–224.
Mayr, E., 1982. The Growth of Biological Thought. Harvard University Press, Cambridge, MA.
Meier, S.P., Packard, D.S.J., 1984. Morphogenesis of the cranial segments and distribution of neural crest in embryos of the snapping turtle,Chelydra serpentina. Dev. Biol. 102, 309–323.
Mitgutsch, C., 2003. On Carl Gegenbaur’s theory on head metamerism and the selection of taxa for comparisons. Theor. Biosci. 122, 204–229.
Noden, D.M., 1983a. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am. J. Anat. 168, 257–276.
Noden, D.M., 1983b. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165.
Noden, D.M., 1986. Patterning of avian craniofacial muscles. Dev. Biol. 116, 347–356.
Noden, D.M., Marcucio, R., Borycki, A.G., Emerson, C.P., 1999. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev. Dyn. 216, 96–112.
Oken, L., 1807. Über die Bedeutung der Schädelknochen. Ein Programm beim Antritt der Professur an der Gesamt-Universität zu Jena. Göbhardt, Bamberg and Würzburg.
Olsson, L., 2005. Alternatives to Darwinism in Sweden: Lamarckism and idealistic morphology, disbelief in mutations and the poverty of selection. Jahrbuch für Europäische Wissenschaftskultur 1, 1–14.
Olsson, L., Hanken, J., 1996. Cranial neural-crest migration and chondrogenic fate in the Oriental firebellied toadBombina orientalis: defining the ancestral pattern of head development in anuran amphibians. J. Morphol. 229, 105–120.
Olsson, L., Falck, P., Lopez, K., Cobb, J., Hanken, J., 2001. Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian,Bombina orientalis. Dev. Biol. 237, 354–367.
Pasqualetti, M., Ori, M., Nardi, I., Rijli, F.M., 2000. Ectopic Hoxa 2 induction after neural crest migration results in homeosis of jaw elements inXenopus. Development 127, 5367–5378.
Richards, R.J., 2002. The Romantic conception of life. Science and Philosophy in the Age of Goethe. Chicago University Press, Chicago and London.
Richman, J.M., Lee, S.H., 2003. About face: signals and genes controlling jaw patterning and identity in vertebrates. Bioessays 25, 554–568.
Rijli, F.M., Gavalas, A., Chambon, P., 1998. Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol. 42, 393–401.
Rose-Engelberth, M.J., 1999. Das Kopfproblem der Vertebraten—Kenntnisstand und Problematik. Unpublished Ph.D. thesis, Witten-Herdecke.
Schilling, T.F., Kimmel, C.B., 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494.
Schneider, R.A., Helms, J.A., 2003. The cellular and molecular origins of beak morphology. Science 299, 565–568.
Shigetani, Y., Sugahara, F., Kawakami, Y., Murakami, Y., Hirano, S., Kuratani, S., 2002. Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296, 1316–1319.
Shigetani, Y., Sugahara, F., Kuratani, S., 2005. A new evolutionary scenario for the vertebrate jaw. Bioessays 27, 331–338.
Smith, A., Robinson, V., Patel, K., Wilkinson, D.G., 1997. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570.
Smith, M.M., Coates, M.I., 2001. Evolutionary origins of teeth and jaws: developmental models and phylogentic patterns. In: Teaford, M.F., Smith, M.M., Ferguson, M.W.J. (Eds.), Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge and London, pp. 133–151.
Stensiö, E.A., 1927. The Devonian and Downtonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet 12, 1–391.
Svensson, M.E., Haas, A., 2005. Evolutionary innovation in the vertebrate jaw: a derived morphology in anuran tadpoles and its possible developmental origin. Bioessays 27, 526–532.
Veitch, E., Begbie, J., Schilling, T.F., Smith, M.M., Graham, A., 1999. Pharyngeal arch patterning in the absence of neural crest. Curr. Biol. 9, 1481–1484.
Author information
Authors and Affiliations
Corresponding author
Additional information
From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20-1, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept?”
Rights and permissions
About this article
Cite this article
Olsson, L., Ericsson, R. & Cerny, R. Vertebrate head development: Segmentation, novelties, and homology. Theory Biosci. 124, 145–163 (2005). https://doi.org/10.1007/BF02814481
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02814481